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Abstract

Large language models have strong capabilities for different purposes, such as searching and question-answering
[1]. However, they hallucinate on domain-specific tasks, leading to potential risks such as misinformation spread
or decay of trust between the technology and the user. These risks are more or less prominent depending on
the context where an LLM is employed. For example, in a scientific setting, such as the Earth Observation (EO)
domain, the LLM must ensure important criteria when answering, such as depth and groundedness [2]. To
overcome hallucinations, recent research indicates that compound systems, which employ external tools and
knowledge alongside LLMs, outperform standalone LLMs. Therefore, this paper presents a compound system
to create a question-answering model for the EO domain. More precisely, our approach employs a Retrieval-
Augmented Generation (RAG)-based model, focusing on three sequential components: (1) Data Curation to
enable the LLM to access a semantically interconnected multi-genre corpora (e.g., scientific and datasets) when
answering a question. (2) RAG-Based Model to balance between the LLM’s existing knowledge and the curated
data (from (1)). Lastly, (3) LLM-Based Evaluation to compare standalone LLM answers to our RAG-based
model. Our evaluation across 70 EO questions shows that our approach achieves the highest score across all
criteria (e.g., helpfulness), whereas traditional RAG underperforms zero-shot prompting on larger models. Our
code and data are available on GitHub (https://github.com/DLR-SC/RAG-for-Earth-Observation) and Zenodo
(https://doi.org/10.5281/zenodo.17106943).

Keywords

Large Language Models (LLMs), Retrieval-Augmented Generation (RAG), Question Answering (QA), Earth
Observation (EO), Knowledge Graph, Data Curation, Context Engineering, LLM-Based Evaluation, Hallucination
Mitigation

1. Introduction

Information search in scientific domains is often of an exploratory nature, with many open-ended
tasks executed in parallel. Furthermore, such processes are oftentimes opportunistic, iterative, and
multi-faceted [3]. In order to increase efficiency regarding the search for information in an ever-growing
landscape of heterogeneous information sources, intelligent tools are needed to find, connect, and
extract knowledge beyond classical search engines.

Recently, large language models (LLMs) have become an integral part of scientific information
systems. They can engage in human-like interactions and speed up information seeking and processing.
However, despite the impression of intelligence, it is crucial to acknowledge two issues that arise when
using LLMs for generation: hallucination [2], and limited ability to expand or revise knowledge [4].
These problems prove critical when an LLM is used for question-answering within scientific search,
where precision and currency are important.

A common mitigation of these problems is combining LLMs with retrieval systems to provide the
LLM with additional context information before generating an answer, which is known as “retrieval-
augmented generation” (RAG) [4]. This context can entail domain-specific and recent information,
which improves the precision and the currency of the LLM’s answers.

This paper tackles the question-answering task (QA) using RAG within the specific scientific domain
of Earth Observation (EO) and its application in Earth Sciences. Our approach’s novelty stems from
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incorporating both EO datasets and publications as information sources and interconnecting them on a
semantic level. As illustrated in Figure 1, our approach has three sequential steps:

(1) Data curation. Data curation creates a reservoir of recent and interconnected data tailored for
EO. More precisely, it creates a multi-genre knowledge graph that interconnects published scientific
abstracts (e.g., abstracts from OpenAlex) to scientific artifacts (e.g., datasets from PANGAEA), which
are semantically connected via keywords.

(2) RAG-based model development Our RAG-based model aims to include the most important
information in the LLM context, given the limited length of that context; we refer to this part as context
acquisition. It initially conducts a lexical-based search, fetching all matching nodes (publications and
artifacts). Then, it broadens the search by traversing the connecting nodes, resulting in a subgraph.
However, due to the limited LLM context, the subgraph is further filtered via semantic search.

After the context acquisition, our model generates the answer by employing a two-step RAG that
leverages the LLM’s knowledge and our curated data by: (step 1.) exploiting the general knowledge of
the LLM by using a zero-shot prompt, then (step 2.) refining the zero-shot answer by re-prompting the
LLM with the acquired context.

(3) LLM-based evaluation To emphasize the added value of our RAG-based approach compared to
simple zero-shot prompting, we use LLM-as-a-judge to score the answer based on several criteria such
as groundedness [4], and helpfulness [5].

Our evaluation of 70 EO questions using a small LLM (Mistral 24B) and a large LLM (Llama 70B) reveals
an intriguing contrast between our two-step RAG, standard one-step RAG, and zero-shot prompting.
Our two-step RAG approach, which first generates an answer and then refines with retrieved context,
yields the strongest results on all evaluated criteria (e.g., depth, relevance, helpfulness) with a high
effect size. In contrast, the standard one-step RAG underperforms even zero-shot prompting on the
larger model, resulting in less helpful and shallower answers. Manual inspection reveals that one-step
RAG becomes constrained to the retrieved context and cannot integrate the LLM’s existing knowledge.

Our contributions are threefold:

«+ A reservoir of heterogeneous data sources, and their semantic relationships stored in a graph
database with more than two million nodes for Earth Observation.

+ An approach to integrate such a knowledge graph within an RAG model for complex question
answering over publications and datasets.

+ An evaluation study based on the LLM-as-a-judge strategy [6] that shows that our approach
leads to more grounded and informative answers to EO-specific questions compared to zero-shot
prompting, and standard one-step RAG.

2. Related works

Nedumov and Kuznetsov [3] explores the information needs and specific requirements of scientific
search tasks to define essential user interface tools for effective scientific search. They define three sets
of tools to improve users’ exploratory search tasks, focusing on querying, visualizing, and long search:

Tools for querying. These tools improve a user’s queries for their search tasks by refining or
extending them. In our work, we refine the question into a query (yielding a statement) using LLM with
zero-shot prompting, similar to [7]. This step improves retrieval for the lexical and semantic search
within our approach.
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Figure 1: An overview of the two-step RAG approach, including two components: Data Pipeline (left), a
multi-genre knowledge graph (KG) linking scientific artifacts and scientific abstracts (publications). Furthermore,
the RAG-Based QA model incorporates two parts: 1. context acquisition that, given a question, fetches a
subgraph from the KG, embeds the results, and stores them in a vector database (VDB). The top results are then
semantically fetched from the VDB to create the context. Then, in the Generation phase (right), an LLM answers
the question by drafting an answer in a Zero-shot manner, then incorporating the draft and re-prompting the
LLM to generate the final answer.

Tools for analyzing and visualizing search results. These tools help the user make sense of the
retrieved documents by visualizing certain aspects of the data and allowing users to filter and restrict
the search results (e.g., facets, hierarchical classification, and data visualization). Betz et al. [8] presents a
graph-powered visual search engine for Earth Sciences that allows the visual exploration of semantically
related datasets. While our work uses similar datasets and a semantically connected knowledge graph,
we significantly extend the data included. We then automate exploring and retrieving information
from the knowledge graph. More specifically, we broadly acquire the data from a large knowledge
graph, explore related work by traversing the graph, and narrow down the acquired data to fit human
comprehension. Another difference is that our focus stems from natural language interaction (QA)
rather than visualization.

Tools for long search.  These tools enable social collaborations for scientists to share their search
results among colleagues and save intermediate results to continue search processes over a more
extended period [3]. While this work is human-centric, our approach is machine-centric and does not
explicitly address long search

For science search applications in Earth Science, existing research covers extensive and complex
systems, employing traditional information retrieval by hosting scientific data and publications. For
instance, Science Discovery Engine [9] provides a comprehensive user interface, allowing complex
searches based on topics, tags, and other criteria. Also, PANGAEA! provides a data portal for georefer-
enced data and includes an interactive map for geospatial filtering. These search engines are specialized
for FO and can be used as data sources for our data curation. Also, in contrast to this work, we focus on
question-answering using LLM-based models.

Recent research closely related to our work developed question-answering systems for Earth Observa-
tion data archives. EarthQA [10] enables querying satellite images, TerraQ [11] enables spatiotemporal
question answering over satellite image archives, and the DA4DTE [12] develops a digital assistant for
satellite data archives. Similarly, we focus on natural language queries within a QA system; however,
we tackle retrieved, multi-genre, interconnected text rather than images.

Integrating features such as geospatial queries and multimodal support could be significantly benefi-
cial in the future.

'https://www.pangaea.de/



3. Approach

This section outlines our approach for a RAG-based QA model for the Earth Observation (EO) domain,
consisting of two parts: (1) the knowledge graph creation, and (2) the two-step answer generation,
as detailed below.

3.1. Knowledge Graph Creation

A RAG-based model can access external knowledge to improve its answers. The backbone of our
system is an integrated knowledge graph including multi-genre Earth Observation data created by an
information extraction pipeline similar to Honeder et al. [13].

We create a knowledge graph semantically connecting EO scientific abstracts with scientific artifacts
(EO datasets and their metadata) via keywords. For that, the data pipeline includes extracting keywords
from textual contents after fetching and processing them (detailed in section 4).

To this end, we develop TaxoTagger, a tool that matches texts to keywords of a given taxonomy.
TaxoTagger is motivated by explicit semantic analysis [14] where the topics of an unknown text are
determined by its semantic similarity to documents for which the topic is known.

Similarly, TaxoTagger compares the embedding e(t) of a given text ¢ with the embeddings e(c) of
keywords (a.k.a. concept) descriptions c in a given taxonomy, such as NASA’s GCMD (Global Change
Master Directory), an Earth Science taxonomy?. If the cosine similarity between the text and concept
description embedding is greater than a given threshold s.(e(t), e(c)) > ©, keyword c is linked to text ¢ in
our knowledge graph.

The semantic similarity score s.(e(t), e(c)) is stored as an attribute of the edge connecting a document
(abstract, or artifact) and a keyword.

In the presented work, we use GCMDY?, a hierarchical set of controlled Earth Science vocabularies as
a taxonomy [15, 16] (e.g., earth storable). We detail the implementation and data statistics in Section 4.
Figure 2 depicts the ontology of the knowledge graph along with an example.
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Figure 2: The Knowledge Graph Ontology with an example, connecting Scientific Abstracts to Scientific Artifacts
via a keyword. The connection strength is stored as a score in the edge between the keyword and the connecting
node.

*https://www.earthdata.nasa.gov/data/tools/gemd-keyword-viewer
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3.2. Generation Approach

A RAG-based model requires the user question g and the context c¢. After fetching ¢, the answer is
generated by prompting the LLM with c and q. This section details the context acquisition and the
generation.

Context Acquisition.

This part details the process of creating c for a question g by leveraging the connections between the
data points and the exploratory nature of the knowledge graph. We develop a hybrid retrieval process
involving three sequential steps, going from a broader exploratory context to a narrower context that
fits an LLM prompt: lexical search, graph-based context expansion, and semantic search.

1. Lexical Search. When the LLM is prompted with a natural language question (g), this question
is first reformulated into a query [17, 18] by instructing the LLM to turn q into a statement. The
query is used to fetch a set of the top k.., matching nodes, namely scientific abstracts and
artifacts (e.g., datasets) using a BM25 search index.

2. Graph-based Context Expansion. We expand the context by traversing the graph to include
nodes from the neighborhood of the kj, ;.4 initially retrieved nodes. This subgraph includes the
Kex pand top-scoring scientific keywords (as described above, the score s.(e(t), e(c)) denotes the
semantic relatedness between a document and a keyword), as well as the kg pgng top-scoring
datasets and publications linked to these keywords. This results in a broad context enabling
information diversification.

3. Semantic Search. In the final step, this broad context of documents and keywords associated
with the retrieved nodes is then chunked, embedded, and saved in a vector database. The n closest
documents (chunks) to the query in this semantic vector space form the narrow context eventually
used to augment the prompt.

cis a formatted string representation of the resulting chunks returned from the Semantic Search step.

Generation with Context.

This paper compares two strategies to generate an answer based on c¢. In one-step (or classical) RAG, an
augmentation function f,(q,c) augments q directly with ¢ by creating a prompt that instructs the LLM
to consider c explicitly when generating an answer LLM( f,(g,¢)) = a.

Since it can be beneficial to condition an LLM to use its own knowledge in addition to the context
to avoid context overfitting, we additionally use a two-step RAG as a simple adaptation of multi-
step generation [19, 20]. Instead of augmenting q directly, the LLM first generates an initial answer
LLM(q) = a in a zero-shot manner, leveraging the LLM’s knowledge. Then, the refinement function
f(a, c) generates a prompt instructing the LLM to refine a taking into account c to generate an answer a

a = LLM(f(a,c)) = LLM(f(LLM(g),¢)).

4. Data for Knowledge Graph Creation

To build the knowledge graph described in Section 3, we acquire scientific abstracts and artifacts mainly
from OpenAlex [21]. We additionally extract a relatively small number of datasets from the PANGAEA
portal for Earth Sciences [22], and the EOC Geoservice portal of the German Aerospace Center (DLR) °.
Table 1 shows the count of each node type and its sources. Below, we elaborate on each source:

*https://geoservice.dlr.de
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Figure 3: Distribution of the maximum keyword scores, assigned by TaxoTagger for each OpenAlex topic.

OpenAlex for Scientific Abstracts and Artifacts. ( 2 million entities) OpenAlex (OA) is an open
index of scholarly works tagged with topics across all scientific domains. We fetch EO-related datasets
(46, 933) and publications (2,021, 267) metadata like titles and abstracts. To fetch domain-specific data
from OA, we do the following steps:

« OA Topics Selection. We extract all the OA topics related to the EO domain. More precisely,
we extract the highest-scoring keyword for each OA topic using the TaxoTagger. Then, topics
(Tgo) with a score > 0.4 are selected. This threshold was selected by plotting the histogram of the
maximum score and choosing the middle score, as shown in Figure 3.

« OA Work Selection. We fetch all the OA works for each topic in (Tgp), extract the keywords
using TaxoTagger, then filter out works that have a maximum score of < 0.375. This threshold
was also selected using the previous approach.

Additionally, we inspected the results manually.

PANGAEA for Scientific Artifacts. (885 datasets) We crawled the datasets’ information from
the PANGAEA portal for Earth Sciences [22] that contains various georeferenced data, ranging from
chemistry to agriculture. The crawler used is part of the OpenSearch project and can be used for
multiple data providers*. Then, we extracted the content from the resulting WARC?” files.

EOC Geoservice for Scientific Artifacts. (65 datasets) We acquire Spatio-Temporal Asset Catalog
(STAC) © collections available via the EOC Geoservice portal of the German Aerospace Center (DLR)
using the STAC API®,

After extracting all relevant metadata and relations, the graph was created with the Corpus Annotation
Graph Builder framework (CAG) [23] and stored in an ArangoDB’ graph database instance. As shown
in Table 1, the knowledge graph has 2,021,267 nodes and 41,159,409 edges. Also, Figure 2 shows an
example of the knowledge graph content.

5. Experiments and Results

This section reports the evaluation strategy, experiment settings, and results.

*https://opencode.itdi.eu/openwebsearcheu-public/opensearch-fill-in-crawls
Shttps://iso.org/standard/68004.html

Shttps://stacspec.org/

"https://geoservice.dlr.de
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*https://arangodb.com/
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Table 1
The count of each node type: Scientific Abstracts of publications and Datasets (Artifacts), grouped by sources
(OpenAlex, PANGAEA, and EOC Geoservice).

Node type # entries Source

Scientific Artifact (aka Dataset) 47,883  OpenAlex, PANGAEA, EOC Geoservice
Scientific Abstract (publications) 2,021,267 OpenAlex

Keyword 3,599 NASA’s GCMD?

Total 2,072,749

We employ an LLM as a judge [6] evaluation approach that relies on generating test data and assessing
answers using an LLM, due to the lack of reference data. Then we detail our experiment settings (context
acquisition and generation) and report the results.

5.1. LLM-Based Evaluation Approach

Evaluation consists of LLM-based question generation for testing and LLM-based answer assessment.

Question Generation

We generate domain-specific questions by prompting, as shown in Figure 4, an LLM in a zero-shot
manner while incorporating two variables: (1) topic [24, 25]: we select random topics and their
description from the NASA GCMD taxonomy to ensure domain-specific questions, and (2) defining the
intent behind the question to improve question diversity [26], and are as follows:

« Exploratory: asking for discovering new concepts and has no expectations (e.g., "How do variations
in cryospheric indicators, such as glacier retreat and sea ice extent, influence carbon flux dynamics and land
surface heat absorption patterns?”).

« Comparative: asking for comparing two scientific concepts, such as methods (e.g., "How do genetic
analysis methods compare to traditional physical characteristic-based approaches in classifying vertebrates,
invertebrates, and fungi within the biological classification system?).

« Descriptive: asking for an explanation or description of a concept (e.g., "What is the role of climate
change adaptation in mitigating risks to human settlements?”.

+ Causal: asking for cause and effect between phenomena; it usually starts with why (e.g., "How
do variations in atmospheric gas concentrations preserved in ice core records influence global temperature
changes during glacial and interglacial periods?”).

« Relational: asking for the relationship between two concepts (e.g., "What is the relationship between

cloud cover variability and changes in atmospheric temperature at different altitudes?”).

We used GPT-4o to generate a set of 70 questions using the prompt in Figure 4. We selected all of the
14 NASA topics (e.g., atmosphere, cryosphere) that exist in our knowledge graph (Section 4) from the
NASA GCMD? taxonomy.

LLM-as-a-Judge

An LLM is employed to assess several criteria for each answer (a), question (g), and context (c). We adapt
the approach of Kim et al. [27], where gpt-40-mini-2024-07-18, as the judging LLM, is prompted
to score answers concerning the question and retrieved context along different criteria, with scores
ranging from 1 (low) to 5.

We select the 5 rating criteria from the literature:

+ Relevance: measures the alignment between the question and the answer [5],
« Groundedness: measures whether the answer is supported by the given c or a known source [4],



### Question Criteria:
INTENT: {intent_category} — {intent_description}
TOPIC:

The topics are extracted from the NASA GCMD Taxonomy. The TOPIC is described and few of its
SUBJECT AREAS.

<topic >
{context}
</topic >

### Instructions

The question must strictly reflect the stated INTENT and be centered on the specified TOPIC
along with its SUBJECT AREAS. Do not include any background or —explanationjust the
question .

### Question:

Figure 4: Question Generation Prompt, to generate topic and intent specific question.

« Helpfulness: measures whether the answer provides useful and contextually appropriate content
(5],

« Depth: measures whether the answer is detailed and broad [28], and

« Factuality: measures whether the answer is scientifically correct and verifiable [29].

5.2. Experimental Settings

This section details our experiment settings by first defining our contextacquisition configurations and
then describing our experimental configuration for generating answers.

Context Acquisition Configuration. Based on initial experiments, we chose the parameters of
the retrieval process (see Section 3.2) as follows: given a query g, we fetch the top kjpy;cqr = 16 best
matching publication and dataset nodes from the knowledge graph (lexical search). Then, for context
expansion, for each of the 16 nodes, we fetch the top kxpaa = 3 keywords with the highest scores.
After that, for each of the keywords, the top Kscondary = 2 most related documents are included. Note
that we only consider connections with a score s.(e(t), e(c)) > 0.3 to avoid expansion in unrelated areas.
This subgraph is then embedded using the model mistral-embed and saved with ChromaDB'? vector
database (VDB) with chunksize = 256 and overlap = 64. Lastly, the top kepmanric = 10 documents are
fetched to be included in the generation prompt.

Model Configurations. We run our experiments using two open-weight LLMs, varying in their
parameter size: Mistral Small 24B, and Llama-3.3 70B. For our implementation, we use the LangGraph
Python agent framework'!, along with LangChain. Each of these models answers the 70 questions in a
zero-shot (Oshot) manner, one-step RAG (rag), and two-step RAG (2rag).

The 420'? are evaluated using gpt-4o-mini-2024-07-18.



Table 2

Mean scores using Mistral Small (left) and Llama 3.3 70B (right), for each experiment for two-step generation
RAG (2rag), one-step generation RAG (rag) and Zero-Shot generation (0shot). The overall and per criterion mean
scores is reported. * denotes approaches that achieve significantly higher scores than the 0shot baseline, while
tindicates scores that are significantly higher than those obtained with rag..

(a) Mistral Small (b) Llama 3.3 70B

Overall Factual Relev. Ground. Helpful Depth Overall Factual Relev. Ground. Helpful Depth
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Figure 5: Heatmap for each criterion (Overall, Groundedness, Helpfulness, and Depth) for Mistral Small (left)
and Llama 3.3 70B (right). The y-axis represents each assessed criterion, and the x-axis represents each effect-pair
(m1 vs m2). Each cube represents the effect size r: a green/blue color indicates a positive effect size where m1
has a significantly higher number than m2 (m1 » m2), whereas a brown/orange color indicates the opposite (m1
«m2).

5.3. Results

The results for experiments with Mistral Small 24B, and Llama-3.3 are reported in Table 2 that shows
the mean score for all five criteria'®.

We measured significance between scores, per model, using ANOVA in cases of normality (Kruskal-
Wallis otherwise). If p < 0.05, we conducted post-hoc analysis (independent t-test in case of normality,
Mann-Whitney otherwise) with Bonferroni correction. We report below (and in Table 2) the results
where p < 0.05. Additionally, we calculate the effect size r to quantify the strength of the observed

significant differences, as shown in Figure 5.

One-step RAG is rated worse than zero-shot on big LLM. One-step RAG (rag) has a surprisingly
bad rating when using Llama 3.3 70B compared to the Zero-shot (0shot) model, which outperforms the
RAG-based model overall with a medium effect size r = 0.26. More specifically, helpfulness and depth
scores decrease significantly with a high effect of r = 0.48 and r = 0.53. This pattern was not observed
when using Mistral; these two criteria had no significant differences.

Answer relevance is constantly rated high for the zero-shot approach, which can be attributed to the
fact that, without additional context, the answers are closely aligned with the questions. As a result,
they get higher relevance judgments. In contrast, answers produced by RAG sometimes consider the
context created from the retrieved information, affecting their relevance. By manual inspection, we
found that zero-shot prompting, in most cases, gives longer and more elaborate answers. In contrast,

https://trychroma.com/

"hitps://langchain-ai.github.io/langgraph/

1270 questions, two models, and three approaches yield 420 answers.

BThe generated questions and answers are available on Zenodo (https://doi.org/10.5281/zenodo.17106948)
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one-step RAG answers are very much fitted (or aligned) to the given context. Answers often contain
references to publications and datasets but include little additional information.

The Two-Step RAG Generation performs the best. As a hybrid approach that uses RAG to improve
a zero-shot generated answer, two-step RAG (2rag) combines the strength of the two other approaches -
the grounded answers of RAG and the ability to elaborate on them further by leveraging the LLM’s
internal information. It outperforms the one-step RAG and zero-shot approaches, using either a small
(overall score: 4.95) or a larger LLM (overall score: 4.89). This increase in performance strength is
illustrated by the high effect size (Figure 5) ranging between r = 0.43 and r = 0.74.

6. Conclusion and Future Works

This paper presents a RAG (Retrieval-Augmented Generation) system designed for Earth Science,
specifically Earth Observation (EO). It creates a multi-genre, semantically interconnected knowledge
graph (KG) compiled from datasets, publications, and an established EO taxonomy. The KG presents a
rich, exploratory, and information resource for an LLM to answer EO scientific questions, facilitating
the retrieval of accurate, broad and up-to-date information. Our initial LLM-based evaluation shows
promising results, demonstrating significant improvement in the quality of the generated answers.
These findings establish that our approach is a step forward in increasing trust in generative Al in
scientific domains. Consequently, our system can be used as a standalone tool or as a component
enriching larger Earth Science information systems.

As future work, we plan to further integrate web search to increase the system’s capabilities. To this
end, shards of the Open Web Index'* [30] relevant to Earth Sciences will be used as an additional data
source. Furthermore, we will provide more extensive evaluation studies involving human ratings.
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