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Abstract

The increasing frequency and severity of climate-related disasters call for more interpretable and actionable
insights from Earth Observation (EO) data. In this work, we propose a novel framework that leverages multimodal
Large Language Models (LLMs) to construct structured knowledge graphs (KGs) from heterogeneous disaster-
related sources, including satellite imagery, textual reports, and geospatial metadata. By grounding these data
streams in a domain-specific ontology, we produce semantically rich, human-aligned representations of extreme
events so as to enable transparent reasoning and flexible querying across spatial, temporal, and socio-economic
dimensions. We demonstrate the utility of our system through a detailed case study on flood events, supported
by quantitative evaluations of the extracted triples and example KG-based queries. Our results show that this
approach enables interpretable comparisons of disaster events, supports informed planning, and provides a
reusable interface for downstream analysis in climate resilience and emergency response.
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1. Introduction

In recent years, the scale and intensity of climate-related disasters have increased globally. From 1980 to
2024, the United States alone has experienced 403 weather and climate events, resulting in a total cost of
over $2.9 trillion.! Notably, 2024 recorded 27 such billion-dollar disasters in the U.S., triple the historical
annual average. On a global scale, the World Meteorological Organization documented more than 150
extreme weather events in 2024, including record-breaking floods, heatwaves, and hurricanes.? These
disasters displaced over 800,000 people, the highest number since tracking began in 2008. The growing
frequency and severity of such events underscore the need for more effective strategies to mitigate their
impacts and support communities in better preparing for and responding to these challenges.

At the same time, the volume and variety of available data have expanded significantly. Earth
Observation (EO) platforms, such as the European Union’s Copernicus programme and Sentinel satellite
missions, now produce vast amounts of high-resolution, multi-modal data daily.® This growth is
supported by a rapid increase in satellite infrastructure. As of May 2025, approximately 11,700 active
satellites orbit the Earth, with more than 2,800 launched in 2024 alone.* A significant portion of these
are dedicated to EO, and forecasts suggest that even more EO satellites will be launched between 2024
and 2033, effectively tripling current capacity.” Nevertheless, the heterogeneity and scale of this data
make it difficult to integrate and analyse effectively [1].° Unlocking its full potential remains a key
challenge in disaster analysis and decision-making.

Workshop on Al-driven Data Engineering and Reusability for Earth and Space Sciences (DARES’25), co-located with the 28th
European Conference on Artificial Intelligence (ECAI 2025), Bologna, Italy, October 25, 2025

& teoaivalis@iit.demokritos.gr (T. Aivalis)

® 0009-0005-4452-9402 (T. Aivalis); 0000-0003-0478-4300 (L. A. Klampanos); 0000-0003-1078-8121 (A. Troumpoukis)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
https://www.ncei.noaa.gov/access/billions, as viewed July 2025

thtps:/ /www.theguardian.com/environment/2025/mar/19/unprecedented- climate-disasters-extreme-weather-un-report, as
viewed July 2025.

*https://dataspace.copernicus.eu/explore-data/data-collections/sentinel-data/sentinel-2, as viewed July 2025.

*https://www.livescience.com/how-many-satellites-orbit-earth, as viewed July 2025.

*https://news.satnews.com/2024/07/11/novaspace-earth-observation-satellites-set-to-triple-over-the-next-decade, as viewed
July 2025.

Shttps://iaes.cgiar.org/spia/news/challenges-using-earth-observation-data-impact-evaluation, as viewed July 2025.


mailto:teoaivalis@iit.demokritos.gr
https://orcid.org/0009-0005-4452-9402
https://orcid.org/0000-0003-0478-4300
https://orcid.org/0000-0003-1078-8121
https://creativecommons.org/licenses/by/4.0/deed.en
https://www.ncei.noaa.gov/access/billions
https://www.theguardian.com/environment/2025/mar/19/unprecedented-climate-disasters-extreme-weather-un-report
https://dataspace.copernicus.eu/explore-data/data-collections/sentinel-data/sentinel-2
https://www.livescience.com/how-many-satellites-orbit-earth
https://news.satnews.com/2024/07/11/novaspace-earth-observation-satellites-set-to-triple-over-the-next-decade
https://iaes.cgiar.org/spia/news/challenges-using-earth-observation-data-impact-evaluation

To address these issues, we propose a framework that integrates multi-source disaster data, specifically
text descriptions from past events and satellite imagery, into a unified and structured representation.
Recent advances in Large Language Models (LLMs), including their ability to process both textual and
visual inputs, open new possibilities for extracting rich and interpretable information from heteroge-
neous sources. We extract key information from both modalities using multimodal LLMs. These outputs
are then combined and encoded into a knowledge graph (KG), where each node represents aspects
of the disaster such as location, impact, and timeline. Our goal is to compare a selected or current
event with past ones by identifying structurally similar cases. This process enables decision-makers to
draw on historical precedents to better understand the potential trajectory and consequences of new
events. By representing disaster data in a structured and interpretable way, our approach supports
more transparent and informed decision-making.

Contributions. The main contributions of this paper are summarised below:

« We introduce a framework that integrates multimodal disaster data into structured KGs grounded
in a domain specific ontology.

« We leverage state-of-the-art multimodal LLMs to extract semantically aligned triples that describe
disaster impacts, locations, and environmental context.

« We evaluate the semantic alignment and structure of the generated triples using cosine similarity
and standard IR metrics, demonstrating that our method produces high-quality and interpretable
representations across modalities.

« We showcase the practical utility of our KGs through structured queries on socio-economic,
geographic, and environmental attributes, as well as event similarity retrieval, highlighting its
potential for real-world disaster monitoring and response.

2. Related Work

2.1. Disaster Forecasting and Risk Assessment with EO data

EO plays a central role in monitoring and forecasting disasters, offering critical spatiotemporal insights
for risk assessment, response, and mitigation. Central to this progress is the Copernicus Sentinel
programme, operated by the European Space Agency, which delivers high-resolution, multi-sensor data
for monitoring extreme weather events such as floods, droughts, wildfires, and storms. ’ The integration
of radar, optical, and thermal imaging from Sentinel-1, -2, and -3 supports a range of applications,
from early warning systems and damage assessment to long-term climate adaptation. Notably, the
Copernicus Emergency Management Service (CEMS) demonstrates the practical use of EO data for
rapid crisis mapping and emergency response.

While satellite imagery provides essential situational awareness, Merz et al. [2] point out that
traditional early warning systems often fall short in anticipating the socio-economic impacts of disasters.
They propose a more holistic approach that integrates hazard, exposure, and sensitivity data into
predictive models to deliver actionable insights for planners and responders. In a complementary
line of work, Giuliani et al. [3] advocate for a user-centric framework for disaster risk management
(DRM), integrating EO data across the entire DRM cycle—from prevention and preparedness to response
and recovery. Their review highlights how satellite-derived indicators of sensitivity (e.g., roof type,
building density), exposure (e.g., land use, population), and hazard (e.g., sea-level rise, subsidence) can
inform policy strategies. From a computational perspective, Mishra et al. [4] review how data mining
techniques, including neural networks, decision trees, and text mining, have been applied to disaster
detection and forecasting. They describe a two-phase architecture for an Indian disaster management
system that fuses structured data (e.g., meteorological sensors) with unstructured data sources (e.g.,
social media and news feeds). Their findings highlight the growing importance of big data and real-time
analytics in enhancing situational awareness and decision support.
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These studies illustrate a shift from hazard-centric approaches to impact-focused, human-aligned
disaster forecasting. By integrating EO data with socio-economic indicators and machine learning
techniques, researchers are opening new directions for more adaptive risk management frameworks.
This evolution highlights the growing need for intelligent systems capable of integrating, interpreting,
and communicating EO-derived knowledge, an area where recent advances in LLMs hold significant
promise.

2.2. LLMs in EO Tasks

The integration of LLMs into EO has evolved rapidly, building upon a foundation of traditional Al
approaches. Janga et al. [5] provide a comprehensive survey of classical machine learning techniques
applied to EO tasks such as land cover mapping, change detection, object detection, and urban analysis.
While these methods have led to significant advancements, they typically rely on modality-specific
architectures and require extensive task-specific tuning. Persistent challenges, such as data availability,
interpretability, and scalability have motivated the shift toward more unified systems.

To address these limitations, researchers have begun exploring multimodal LLMs as general-purpose
interfaces for EO analysis. Early efforts include RemoteCLIP [6], which employs contrastive learning on
remote sensing (RS) image—text pairs to enable zero-shot classification and retrieval. However, it lacks
generative capabilities. RSGPT [7], which fine-tunes InstructBLIP for RS tasks, improves captioning and
visual question answering (VQA) but underperforms on classification and visual grounding. GeoChat [8]
introduces a region-aware, dialogue-based LLM built on the LLaVA framework. It supports interaction
and spatial grounding but remains limited to optical imagery, restricting its generalisability. Earth-
GPT [9] aims to provide a unified interface for multimodal EO analysis by supporting a wide range of
RS tasks, including scene classification, captioning, VQA, object detection, and visual grounding, across
diverse sensor modalities (optical, SAR, and infrared). It combines a visual-enhanced perception module
(fusing ViT and CNN features), a cross-modal mutual comprehension mechanism, and instruction
tuning over the MMRS-1M dataset. These components enable EarthGPT to handle multi-sensor inputs
and support dialogue-based interactions, addressing several of the limitations present in earlier models.
Following this direction, GeoGPT?, FrevaGPT [10] and DA4DTE [11] represent recent efforts to make
geospatial and climate data analysis more accessible through conversational interfaces. Both systems
enable users—regardless of technical background—to interact directly with EO datasets through natural
language. Their deployment via web-based platforms and integration with tools like ChatGPT have
contributed to their increasing adoption, supporting broader engagement with EO data and fostering
interdisciplinary research.

While not based on LLMs, several systems enable semantic interaction with EO data via structured
knowledge representations. WorldKG [12] structures OpenStreetMap data into a geographic KG linked
to Wikidata and DBpedia. EarthQA [13] translates natural language queries into SPARQL using EO
metadata and external knowledge bases like DBpedia. GeoQAZ2 [14] is a QA engine designed to answer
geospatial questions—including those with quantities and aggregates—over the union of YAGO2 and
YAGO2geo KGs. TerraQ [15] extends these efforts with a non-template-based QA engine over satellite
image archives, offering rich spatiotemporal filtering and integration with a custom geospatial KG.
These systems complement LLM-based models by enabling precise semantic querying and highlight
the convergence of Al and knowledge-based reasoning in EO.

2.3. KG Generation Using LLMs

LLMs have become increasingly central to modern KG pipelines, enabling structured reasoning over
unstructured or semi-structured data. Their contributions are in three core areas: (1) extracting
subject-predicate-object triples from natural text, (2) assisting in ontology creation and exten-
sion, and (3) translating natural language queries into formal graph-based representations.

For triple extraction, prompt-based methods like AutoKG [16] demonstrate that LLMs can reliably
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convert free text into ontology-aligned triples. Triplex’ further refines this capability by introducing
architectural optimisations for scalable and efficient KG construction. In addition, recent benchmarking
studies [17] evaluate zero and few-shot KG generation, showcasing the robustness and flexibility of
general-purpose LLMs across multiple domains. Beyond extraction, LLMs support ontology creation
through techniques like prompt engineering, ontology reuse, and few-shot schema expansion [18]. Such
systems facilitate domain-specific knowledge modelling by proposing consistent and reusable concept
hierarchies. These tools are particularly valuable in emerging scientific domains. In semantic parsing
and question answering, LLMs have shown promise in translating natural language into executable
graph queries, such as SPARQL. Recent surveys [19, 20, 21] provide a systematic overview of this
emerging field, highlighting the evolution from modular, rule-based NLP pipelines to unified, LLM-
driven KG systems. These systems integrate tasks such as entity recognition, relation extraction, and
graph population within a single generative or multitask framework.

These advances in LLM-driven KG construction offer a compelling foundation for interpretable and
verifiable AI applications. In the context of EO, such KGs can be constructed directly from multimodal
or metadata-rich datasets, providing structured representations that enable traceable reasoning. Instead
of relying solely on dense embeddings or black-box models, we propose to leverage these interpretable
KGs as intermediate, human-aligned objects for understanding and forecasting extreme events.

3. Methodology

Our methodology is grounded in a core principle: to make disaster-related data more explainable
and actionable, we must first represent it in a structured and semantically rich format that supports
human-aligned interpretation. We therefore propose a flexible framework for integrating heterogeneous
data sources into a unified representation using ontologies and KGs. This approach enables us to
compare events across multiple axes and supports more robust, interpretable decision-making.

3.1. From Multi-source Data to Unified Semantic Structures

Disaster data is inherently multimodal. For a single event, we might collect descriptive text from
humanitarian agencies, visual signals from satellites, geographic features from open maps, and numerical
metadata from sensors. Each modality offers a different view, but without integration, these insights
remain hard to compare across events or regions. To address this, we employ an ontology-guided
unification process. The main advantage of an ontology is that it can encode all the key concepts and
relationships relevant to a specific task, in our case extreme events. Using this structured vocabulary,
we can map raw inputs into consistent triples. The resulting KGs allow each disaster to be modelled as
an interconnected entity whose attributes are logically organised and semantically comparable.

3.2. KG Construction from Multimodal Sources

We employ a pipeline that automatically constructs KGs from multi-source inputs. For each disaster
event, we can collect and organise a diverse set of data types, including textual information (such as
situation reports or narrative descriptions), satellite images and derived visual indicators, geospatial
metadata capturing environmental or infrastructural context, and structured statistics that quantify the
temporal dynamics and human or economic impacts of the event. These heterogeneous inputs provide
complementary perspectives on the same phenomenon, which we unify through semantic alignment.

We then use a general-purpose multimodal LLM to extract triples from each input source. It is
informed with the ontology, by giving the necessary relationships via the input prompt in order to
extract structured triples from these sources. These triples describe the attributes of each event and are
stored in a graph database. This enables efficient querying and visualisation of the graph structure. An
overview of this end-to-end process is shown in Figure 1. Once constructed, these KGs serve as the
basis for multiple tasks: identifying similar past events, computing descriptive statistics, generating
interpretable summaries, and supporting response planning. The unified representation ensures that
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Figure 1: Overview of the end-to-end pipeline for transforming heterogeneous disaster-related data into
structured KGs using domain-specific ontologies and multimodal LLMs. The resulting KGs enable interpretable
analysis, event comparison, and decision support in disaster contexts.

both technical systems and human analysts can interpret, reason and act upon the collected data in a
transparent way.

This representation supports interpretable and flexible comparisons. Analysts can assess event
similarity globally or selectively, focusing on specific dimensions such as socio-economic impact,
geographic setting, or environmental results. In contrast to opaque vector similarity, these comparisons
are traceable and explainable, which is essential in high-risk applications such as disaster preparedness
or policy planning.

4. Case Study: Structured Analysis of Flood Events

4.1. Data Collection and Enrichment for Flood Events

Our primary dataset is sourced from ReliefWeb ', a leading humanitarian information service provided
by the United Nations Office for the Coordination of Humanitarian Affairs (OCHA) !!. Operated by
the Digital Services Section of OCHA’s Information Management Branch, ReliefWeb continuously
monitors and curates content from over 4,000 sources, including humanitarian agencies, governments,
research institutions, and media outlets. Its editorial team classifies and delivers high-quality, up-to-date
information to support informed decision-making. Each disaster event entry on ReliefWeb includes
structured metadata (e.g., disaster type, location, date), rich textual descriptions, situation reports,
statistics on humanitarian impact, and supplementary content. These comprehensive entries provide
critical context on the scale, effects, and emergency measures associated with each event. This makes
ReliefWeb an invaluable source for constructing structured representations of real-world flood scenarios
across diverse geographic regions.

To complement the disaster event data with geographic and environmental context, we incorporate
information from OpenStreetMap (OSM)'?, a collaborative open-data project that provides freely
accessible, high-resolution geographic information. Developed by a diverse global community of
volunteers, including cartographers, GIS professionals, humanitarians, and local contributors, OSM
emphasises local knowledge and accuracy. Contributors use aerial imagery, GPS traces, and field surveys
to map features such as roads, rivers, forests, elevation peaks, and infrastructure across the world. In our
study, we utilise OSM to extract natural features of the affected regions, such as water bodies, wooded
areas, and topographical landmarks, based on the coordinates of each event. This geo-enrichment
supports spatial reasoning and risk assessment by providing fine-grained insight into the environmental
characteristics of the impacted locations.

In addition to textual and geographic data, we collect satellite images related to flood events from the
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Table 1
Multimodal data for the Sri Lanka flood event (December 2019), combining metadata, geographic features, and
satellite imagery for KG construction.

Relief Web

Field (Type — Name) Content

string — Name Sri Lanka: Floods and Landslides - Dec 2019

date — Date 1 Dec 2019

string — Country Sri Lanka

float — Latitude 7.61

float — Longitude 80.7

string — Disaster Type  Flood

string — GLIDE ID FL-2019-000171-LKA

text — Description According to media, as of 2 December, at least three people died fol-

lowing a landslide in Walapane Village. At least 570 people have been
displaced in Batticaloa District and more than 4,100 people have been
affected in Eastern and Northern Provinces [...]

OpenStreetMap

Field (Type — Name) Content

list — Natural Features Peaks: 2 total; Woods: 2 total; Waters: 1 total

Microsoft Planetary Computer

Field (Type — Name) Content

image — RGB (visual.png)  True-colour composite. Date: 11-31 Dec
image — NIR (nir.png) Near-Infrared. Date: 11-31 Dec
image - NDWI (ndwi.png) Normalized Difference Water Index. Date: 11-31 Dec

Microsoft Planetary Computer'®, focusing primarily on events occurring after 2015. For each event, we
download three types of visual products: (i) visual.png, a true-colour RGB composite (Bands B04, B03,
B02), which approximates human vision and is suitable for general inspection and identifying major
flooding or cloud cover; (ii) nir.png, a Near Infrared (NIR) reflectance image (Band B08), where bright
areas indicate healthy vegetation and dark regions indicate water or built surfaces—useful for detecting
flood impact on vegetation; and (iii) ndwi.png, a Normalized Difference Water Index (NDWI) image
computed as (B03 — B08)/(B03 + B08), where bright pixels correspond to water bodies or saturated
land. For each of the three image types, we retrieve imagery for three time windows relative to the
reported disaster date: before (30 to 10 days prior), during (5 days before to 10 days after), and after
(10 to 30 days following the event). These durations capture both short and mid-term flood dynamics,
supporting analysis of immediate impact and post-disaster recovery. In the current KG construction,
we focus on the after-window, as post-event images are more likely to be cloud-free and reveal clearer
evidence of flooding impact. In future work, we plan to use all time windows to model temporal changes
in the affected regions. Due to cloud cover and limited satellite availability, usable imagery was not
collected for every event. We therefore began with a few hundred well-covered cases and will expand
the database in the next steps.

Table 1 presents a representative example combining both sources for a specific flood event in Sri
Lanka. This includes a brief geo-summary extracted from OSM and an excerpt from the detailed disaster
report on ReliefWeb.

4.2. Ontology Design, Structuring, and Multimodal Integration
4.2.1. Ontology Design and Schema Construction

To extract structured information from multimodal sources, we design tailored prompts for both textual
and image-based inputs. These prompts guide the LLM to produce triples aligned with a controlled
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vocabulary of relationships, reflecting the observable attributes of each disaster. Examples of the
prompts used for both modalities are shown in Figure 2.

To integrate and reason over the heterogeneous information described above we require a structured
representation of each flood event. As outlined in Section 3, we adopt an ontology-based approach to
unify the various data modalities into a stable schema. The ontology captures key characteristics of
each event, supporting downstream tasks such as querying, analysis, and comparison over the events.
Our design is based on established ontologies such as YAGO2geo '* and GeoSPARQL'®. However, the
structure of our final ontology was also directly influenced by the empirical organisation of our dataset.
We intentionally designed the schema to reflect the actual content and granularity of the collected data,
ensuring that all relevant dimensions, ranging from humanitarian impact to environmental features
and RS outputs, are fully captured and semantically linked. Figure 3 summarises the core ontology
relationships used to describe each disaster event in a unified format.

(FL-2025.000028 ECU, aslS03, o)
(FL-2025-000026-ECU, hasDisasterType, Flood)
§EE§3§§I£3§§§E§HZ gigﬁl:sigggg?%ﬂm-no:ao«no:on)

(FL-2025-000026-ECU, hasLatitude, -1.16)
(FL-2025-000026-ECU, hasLongitude., -78.43)

A Prompt (FL-2025-000026-ECU, hasGlide, FL-2025-000026-ECU)
(FL-2025-000026-ECU, peopleAffected, 80126)
@ "You are a geospatial analyst. Your task is to extract (FL-2025-000026-ECU, displacedPeople, 168)
triples of the form (subject, predicate, object) using (FL-2025-000026-ECU, fatalitiesReported, 16)
the GLIDE ID as_SLIDJE_C‘I,lOI the predicates and (FL-2025-000026-ECU, injuriesReported, 91)
Metadata types of the relationship.tx file. Extract all structured, (FL-2025-000026-ECU, housesFlooded, 21145)
fields directly when available. Parse impact and (FL-2025-000026-ECU, housesCollapsed, 98)
cause information from the description text. If a (Etggﬁg%ggigggg scrhoulsAﬁeclSd. 12) an .
Textual-report value is unavailable or uncertain, skip the triple. Do (FL- . -ECU, infrastructurel amaged, oeses']
not invent any data. Output format: Only refurn a list (FL-2025-000026-ECU, economicDamage, "severe”)
Qualitative insights, including of triples, one per line, in the format: (subject, (FL-2025-000026-ECU, powerQutage. true)
y predicate, object). No extra comments or text (FL-2025-000026-ECU, waterSupplyCut, true)
infrastructure damage, evacuation please only the triples.” (FL-2025-000026-ECU, needsShelter, true)
measures, and eyewitness accounts. (FL-2025-000026-ECU, causedBy, “"heavy rainfall’)
These reparts provide context on the (FL-2025-D00026-ECU, affectedArea, 23 out of 24 pi in Ecuader?)
event's braader impact (FL-2025-000026-ECU, hasWaters, 29)

(FL-2025-000026-ECU, hasWetlands, 13)
(FL-2025-000026-ECU, hasWoods, 5)
(FL-2025-000026-ECU, hasMountainRanges, 2)

(a) Prompt for triple extraction from text modality.

(FL-2017-000054-BFA, hasvisualimage, FL-2017-000054-BFA-visual)

(FL-2017-000054-BFA-visual, hasLandCover, urban)
NIR Image (FL-2017-000054-BFA-visual, showsFeature, roads)

(FL-2017-000054-BFA-visual, hasVegetationDensity, low)

(FL-2017-000054-8FA-visual, capturedinSeasan, summer)
(FL-2017-000054-BFA-visual, of, p
(FL-2017-000054-BFA-visual, includes, buildings)
(FL-2017-000054-BFA-visual, traversedsy, roads)
(FL-2017-000054-BFA-visual, containsFeature, green spaces)
(FL-2017-000054-BFA-visual, maylndicate, industrial areas)

RGE Image
(FL-2024-000024-DZA, hasniimage, FL-2024-000024-DZA-nir)

Prom pt (FL-2024-000024-DZA-nir, hasLandCover, vegetation)
(FL-2024-000024-DZA-nir, hasLandCover, water)

"Youl are a geaspatial analyst, Your task s o extract (FL-2024-000024-DZA-nir, hasLandCaver, builtSurfaces)

semantic triples of the form (subject, predicate, (FL-2024-000024-DZA-nir, showsFeature, brightAreas)

object) from the satellite image. The image is an (FL-2024-000024-DZA-nir, showsFeature, darkRegions)

RGBINIRINDWI image. The focus is on detecting 3| (FL-2024 4-DZA-nr, fealth, yveg

fiood presence and surface water dynamics. Use (FL-2024 4-DZA-nr, evel,

only the relationships found in the file (FL-2024 4-DZA-nir, of.

visual.txtinir.txtindwi.txt. Do not infer or assume (FL-2024 4-DZA-nir, containsFeature, brig

unobservable details. Describe only what is visually (FL-2024, 4-DZA-nir, , i

supported by the image. Only output one triple per (FL-2024-000024-DZA-nir, isPartOf, landscapePatterns)

line in the format: (subject, predicate, object). No (FL-2024-000024-DZA-nir, mayIndicate, flooding)

extra comments or interpretation.” (FL-2024-000024-DZA-ni, likelyRepresents, affectedVegetation)
(FF-2021 MNG-ndwi, FF-2021 198-MNG-ndv

(FF-2021-001 MNG-nduwi, .
(FF-2021-000098-MNG-ndwi, showsFeature, drySurface)
(FF-2021-000098-MNG-ndwi, hasLandCover, bareSoil)
(FF-2021-000098-MNG-ndwi, hasLandCover, built-UpAreas)

NDWI Image (FF-2021-000098-MNG-nduwi, hasVegetationMoisture. lowMoisture)
(FF-2021 MNG-ndwi, evel,
(FF-2021-000098-MNG-ndwi, {onsOf
(FF-2021 MNG-nawi, includes.

(FF-2021-000098-MNG-ndwi, containsFeature, turbulentwater)
(FF-2021-000098-MNG-ndwi, adjacentTo, landmass)
(FF-2021-000098-MNG-ndwi, likelyRepresents, Flooded Areas)

(b) Prompt for RGB, NDWI, and NIR image triple extraction.
Figure 2: LLM prompting strategy for extracting triples from different EO data modalities.

4.2.2. Triple Quality Evaluation Across Modalities

To evaluate the quality of the multimodal data extracted by our system, we performed a two-part
evaluation covering both the textual and visual modalities. Starting with the text, we employed the CLIP
encoder [22] to extract text embeddings. Specifically, we used the encoder to process both the natural
language descriptions sourced from ReliefWeb and OSM, as well as the triples generated by the LLM.

Yhttps://yago2geo.di.uoa.gr/, as viewed July 2025
Phttps://opengeospatial.github.io/ogc-geosparql/geosparqgl11/, as viewed July 2025
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Figure 3: Ontology properties used to describe multi-source disaster event data.
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We then computed the cosine similarity between the embedding of the input text and the embedding
of its corresponding set of triples. Additionally, we computed similarities between the input text and
all other non-corresponding triples in the dataset, capturing statistics such as the mean, minimum,
maximum, and standard deviation. As shown in Table 2 (left), the average cosine similarity for matching
pairs is substantially higher than the mean non-matching similarity, indicating that the generated
triples effectively capture the semantic content of the original descriptions. Although the non-matching
similarities are lower, they remain relatively high, with low standard deviation, suggesting consistent
structure across events. This can be attributed to the fact that all events are of the same type (floods),
often involve similar consequences (e.g., displacement, infrastructure damage), and occur in overlapping
regions. The uniformity in description style across the dataset also contributes to higher similarities,
even among unrelated cases.

Table 2
Evaluation metrics for the generated triples: text-based extraction (left) and three image-based extractions

(right).
Image-based Triples

Text-based Triples Metric Visual NDWI NIR
Metric Value Precision 0.5491  0.5962  0.7832
. Recall 0.5602 0.6446  0.8303
Matching 08915 F1 score 0.5537  0.6091 0.8018
Mean non-matching  0.8285 -
. . True Positive 5.4 9.3 11.3
Min non-matching 0.7759 -
. False Positive 4.4 5.2 3.3
Max non-matching 0.8821 .
Std. non-matching 0.0153 False Negative 4.3 4.4 2.5
) i Ground Truth Triples 9.78 14.6 13.8
Predicted Triples 9.84 14.5 14.6

As for the image modality, we manually created a set of ground truth triples for each image, based
on expected content, and evaluated the predicted triples using Precision, Recall, and F1 score. This
assessed both semantic similarity and structural correctness of the extracted KGs. The evaluation
covered RGB, NDWI, and NIR image types. The results in Table 2 (right) show varied performance.
NIR-based triples achieved the highest scores (F1: 0.8018), followed by NDWTI (F1: 0.6091), and Visual
(F1: 0.5537), indicating that in this phase RGB images provide fewer cues for structured extraction. True
positives increased from Visual (5.4) to NDWI (9.3) to NIR (11.3), with a consistent number of predicted
triples across modalities.

Despite lower performance in Visual and NDWTI, all modalities offer complementary information.
The NIR images include a colour bar that guides interpretation, whereas Visual images present raw
satellite views with limited contextual support. NDWI highlights water presence but lacks clarity
without domain knowledge. A potential improvement is using LLMs fine-tuned for EO tasks, such as
those in Section 2.2, to better understand such imagery.



4.3. Demonstration Scenarios: Querying the Knowledge Graph

We stored all the triples in Neo4j'®, a widely adopted database that supports efficient storage, querying,
and visualisation of the KGs. To demonstrate the practical utility of our system, we provide represen-
tative queries over the constructed KG. These queries illustrate how decision-makers, researchers, or
humanitarian organisations can interact with the structured knowledge to extract actionable insights.

4.3.1. Queries on Human, Economic, and Temporal Dimensions of Disasters

To illustrate the versatility and analytical power of our KGs, we present several example queries address-
ing core dimensions of disaster impact, based on structured information extracted from textual reports.
This form of retrieval is useful for identifying disasters with similar socio-economic consequences,
which may inform planning or response efforts for current events.

Top 10 floods (peopleAffected) : : Top 10 floods (fatalities) H Top 10 floods (BusinessesDamaged)  : Top 10 floods (AgriculturalLandAffected)

Region a Peopl d  Region Date a o Busing maged Region Date AgricultureAffected

China € = 100,000,000  Libya 2023-09-10T. 922 China 00:( 0 Syrian Arab Republic 3 - 86,000,000
China Philippines 9 5 2155  Banglades| -2 . 01T00:00 8,500,000
China L 6 India 194-( of 6 0 dia 8- 0:00 7,000,000

China 2010-0! w 0 Sudan 2011-0¢ i ige 2 00:0. China 01T00:00:... 4,500,000

China 1990-06-01T... 26000000  China 1989-07-01T. 3anglades| 98-07-17T00.0. Pakistan 2 x 2,100,000

3 24000000 Pakistan 2010-07-22T. 985  Bangladesh -07T00.0.. sta 2 2,000,000
China 20 -30T. China -01T00.0. 06T00:00 1,500,000
China 2 Iran (Islamic Repu 01-11T00:0.

0 China 20 Viet Nam 2017-06-05T00:0. 25 Thailand 995-10-01T00:00:...

Figure 4: Top 10 flood disasters ranked by (from left to right) people affected, fatalities, businesses damaged,
and agricultural land affected.

We begin by ranking disasters by the number of people affected, targeting displaced or injured ones.
This highlights large-scale humanitarian events and supports emergency response prioritisation. Next,
we identify the most lethal disasters by retrieving events with high reported fatalities. This ranking
helps characterise high-risk scenarios and quantify human loss. We then examine economic disruption
by comparing the number of businesses destroyed. This serves as an indicator of urban resilience and
informs recovery planning. Another query assesses the extent of agricultural land affected, helping
to identify events with potential impacts on food systems and rural livelihoods. The results of these
queries are also visualised in Figure 4 Finally, we explore temporal trends by filtering disasters that
occurred in the 21st century. We group them by decade—2000s, 2010s, and 2020s—to analyse changes
in disaster frequency over time. This supports the investigation of trends linked to climate factors,
vulnerability shifts, or improved reporting. The results of this categorisation are summarised in Table 3.
Table 3
Number of recorded disasters by century and by decade for the 21st century.

Century Disasters Decade (21st) Disasters
20th Century (before 2000) 305 2000s (2000-2009) 513
21st Century (2000 and after) 1293 2010s (2010-2019) 508

2020s (2020—2029) 272

4.3.2. Geospatial and Environmental Comparison

One of the key strengths of our KG framework is its support for rich, context-aware querying that goes
beyond traditional numerical analysis. By incorporating geographic coordinates, regional names, and
environmental attributes, our KG enables users to explore disaster events through both semantic and
spatial perspectives.

As a first use case, we retrieve all disaster events that occurred in a specific country—Afghanistan.
This type of region-based filtering allows localised analysis and supports decision-making for national

https://neodj.com/, as viewed July 2025.
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agencies. By focusing on a country, analysts can identify recurring patterns, assess preparedness
levels, and compare the frequency and impact of disasters over time. To further exploit spatial data,
we leverage geographic coordinates (latitude and longitude) associated with each disaster event. This
enables bounding-box queries, where users can specify a rectangular geographic region, such as an area
covering Europe and retrieve all disasters that occurred within its spatial extent. Such functionality is
particularly valuable for regional comparison.

In a third experiment, we demonstrate semantic similarity search using environmental features
extracted from OSM, such as rivers, forests, wetlands, and mountain ranges. Given a reference disaster,
specifically a flood in Thailand (FL-2021-000147-THA), we query the KG to find other disasters that
occurred in regions with similar natural characteristics. This facilitates retrieval of events influenced
by comparable terrain and ecosystem structures, enabling responders and analysts to anticipate risk
factors and intervention challenges tied to specific environmental contexts.

These querying capabilities illustrate the expressiveness and flexibility of our KGs. By integrating
geospatial and semantic filters into the event retrieval pipeline, we support a wide range of analytical
tasks, from focused regional exploration to generalisable scenario identification, grounded in both
structured knowledge and physical geography.

4.3.3. Image-Based Flood Event Comparison

In our KG-database, each flood event is connected to its corresponding satellite image representations,
specifically visual, NIR, and NDWI images, as illustrated on the left side of Figure 5. This design allows
us to capture complementary perspectives of the same event: visual images provide general scene
context, NIR images highlight vegetation health and moisture stress, and NDWI images emphasize
water bodies and potential inundation areas. By explicitly linking each event to its diverse image
modalities, we enable richer semantic descriptions and enhance the system’s ability to interpret and
compare events based on multiple features.

Figure 5: Graph view of a single flood event (left) and the full dataset (right). Purple node indicates the event,
blue represent associated images, the green shows the country, and orange denote extracted attributes.

For each image, we retrieve the top similar events by comparing their properties, such as land cover,



vegetation and signs of flooding. These queries reveal comparable past events and also make the
similarity interpretable, as users can examine which attributes contribute to each match. This capability
supports various applications, including event monitoring, rapid flood assessment, and understanding
patterns across different flood scenarios by leveraging multi-modal image-derived knowledge.

The entire KG construction pipeline, including data preprocessing, triple extraction scripts, and all
query examples used and referred above, is publicly available in our GitHub repository. !’

5. Conclusions and Future Work

In this paper, we present a novel framework that constructs structured, ontology-guided KGs from
multimodal disaster-related data. By combining textual reports, satellite imagery, and geospatial meta-
data with multimodal LLMs, we enable transparent event representations and interpretable similarity
comparisons. Our system supports a range of applications, from early warning systems to post-disaster
analysis, and demonstrates how KGs can serve as an effective medium for aligning machine reasoning
with human understanding.

Looking ahead, we plan to expand our pipeline in several directions. First, we aim to integrate
additional data sources, such as social media content, sensor networks, and governmental databases,
to enrich the information represented in the graph and improve its contextual depth. Second, we will
explore the use of multimodal LLMs finetuned specifically on EO tasks, with the goal of improving
the accuracy and relevance of triples extracted from satellite imagery. Finally, we intend to engage
with domain experts and end-users through the development of interactive tools, enabling qualitative
evaluation of our system’s usefulness and impact in real-world disaster management scenarios. Through
these efforts, we hope to further enhance the interpretability, robustness, and practical value of structured
Al in Earth and space science domains.
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