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Abstract
Unsupervised domain adaptation (UDA) has emerged as a promising approach to address domain shifts in
remote-sensing scene classification. The acquisition of labelled data from diverse geographic, temporal, and
sensor domains often presents significant challenges, rendering the UDA an essential tool for real-world applica-
tions. Traditional UDA methodologies typically focus on single-source domains. However, real-world scenarios
frequently involve multi-source domains with diverse distributions, which introduce additional challenges such as
inter-source discrepancy, label noise, class imbalance and explainability. To address these challenges, an explain-
able multi-source UDA framework is proposed which integrates feature extraction through contrastive-learning
with an adaptive clustering-based pseudo-labeling named as XMUDA-CLAC. The pseudo-label generation process
is further refined through a multi-objective optimization approach. To enhance transparency and interpretability,
Explainable Artificial Intelligence (XAI) methodologies are employed to visualize the attention maps generated
by contrastive learning-based Vision Transformer (ViT). The proposed XMUDA-CLAC framework is assessed
using four benchmark remote sensing datasets—AID (A), NWPU-RESISC45 (N), PatternNet (P), and UC Merced
(U)—under various domain-shift scenarios: (A → U), (P → N), (U → P), (A, P → U), (A, N → U), (P, U → N), (A, P,
N → U), and (A, U, P → N). In this context, the proposed method demonstrates absolute accuracy improvements
of 0.62%, 0.94%, 0.73%, 0.41%, 0.51%, 1.66%, 0.20%, and 0.10% over the best-performing baselines, respectively.
This illustrates the efficacy of the framework in scenarios involving multi-source domain adaptation with better
interpretability. The source code is available at https://github.com/BinuJoseA/XMUDA-CLAC.
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1. Introduction

The UDA-based methods become an essential approach for mitigating the issue of performance degra-
dation caused by domain shifts [1]. This degradation occurs when machine learning models, initially
trained on labelled source data, are applied to distinct target domains. In the field of remote sensing,
applications such as land-cover classification, disaster monitoring, and urban planning are heavily
reliant on labelled datasets [2]. However, the process of annotating data for each new domain is both
costly and labor-intensive [3]. UDA mitigates this challenge by aligning the feature distributions
between the labelled source and the unlabelled target domains, thereby improving generalization [4].

In the field of UDA, most existing approaches are designed for single-source domains. Nevertheless,
real-world scene classification frequently necessitates multi-source UDA (MUDA), where data are
derived from various domains with unique distributions [5]. MUDA consists of additional challenges,
including domain discrepancies, label noise, and class imbalance, all of which impede effective domain
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alignment [6]. Recent advancements in MUDA have addressed inter-source variation through method-
ologies such as domain-specific normalization, adversarial disentanglement, and attention fusion. In [7],
M3SDA implements moment matching across various sources, whereas MFSAN [8] utilizes multiple
classifiers. Additionally, the methods presented in [9] and [10] employ singular value decomposition
and graph neural networks, respectively, to model domain discrepancies. Nonetheless, these studies
predominantly concentrate on feature alignment, often neglecting the dynamic nature of pseudo-labels
and the potential benefits of explainability.

Recent advancements in UDA, particularly those incorporating contrastive learning and Vision
Transformers (ViTs) [11], have demonstrated promising outcomes. Nevertheless, several significant
research gaps remain inadequately addressed. Current UDA methodologies often rely on static clustering
or heuristic pseudo-labeling strategies [12], which prove insufficient for managing evolving feature
distributions and complex inter-domain variations, especially in multi-source remote sensing contexts.
Furthermore, many approaches treat domain alignment, clustering, and pseudo-labeling as distinct
processes, failing to exploit their interdependence within a unified optimization framework [13]. A
significant issue is the frequent neglect of interpretability, leaving critical questions unanswered
regarding the assignment of specific pseudo-labels or the achievement of domain alignment. This lack
of transparency diminishes trust and limits practical applicability. Consequently, there is an urgent need
for a cohesive MUDA framework capable of adaptively modeling dynamic target distributions, jointly
optimizing multiple objectives for reliable pseudo-labeling, and incorporating XAI techniques such as
Grad-CAM and Rollout [14] to elucidate model decisions. Addressing these gaps would substantially
enhance the robustness, accuracy, and transparency of domain adaptation in remote sensing scene
classification.

To address these challenges, the proposed XMUDA-CLAC framework integrates contrastive learning-
based feature extraction, adaptive incremental clustering, pseudo-label generation and class-aware
pseudo-label refinement through a multi-objective optimization technique. This cohesive design not
only enhances domain alignment and pseudo-label quality but also improves model interpretability
through attention visualization. By uniting these components, our approach offers a robust, scalable,
and interpretable solution for remote sensing scene classification under domain shift conditions.

The major contributions of the paper are as follows.

1. A contrastive learning-based feature extraction mechanism for acquiring domain-invariant repre-
sentations in UDA.

2. An adaptive incremental clustering module designed to produce interpretable high-quality pseudo-
labels.

3. A multi-objective optimization strategy aimed at enhancing cluster reliability, pseudo-label
consistency and domain alignment.

4. A class-aware pseudo-label refinement mechanism alongside dynamic centroid alignment to
address issues of class imbalance, mode collapse, and temporal feature drift.

5. An XAI component for visualizing ViT attention maps and interpreting focused decisions, thereby
augmenting transparency and trust in model predictions.

2. Proposed Framework

The XMUDA-CLAC framework, as depicted in Figure 1, introduces a MUDA approach for remote
sensing scene classification based on substantial domain shifts. Initially, a feature encoder is pretrained
using a contrastive learning model on both the source and target datasets to acquire domain-invariant
representations. These features are subsequently extracted for all source domains and unlabelled target
domain. A source classifier is trained on the labelled source features, and the source class centroids
are calculated. An adaptive incremental density-based clustering algorithm is then employed on the
target features to assign pseudo-labels by aligning the cluster centroids with the mean feature vector.
Simultaneously, a domain discriminator with a gradient reversal layer (GRL) facilitates domain alignment
to produce indistinguishable features across the domains. The training process is directed by four



Table 1
Objective functions and parameters used
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Figure 1: Proposed XMUDA-CLAC framework

objective functions: supervised classification loss on the source domain (ℒcls), adversarial alignment
loss (ℒadv), clustering compactness loss (ℒclust), and pseudo-label consistency loss on the target (ℒpl).
These are collectively optimized using a multi-objective strategy, such as deep learning-based pareto-
front generation. Finally, interpretability is achieved through Grad-CAM, providing insights into both
scene predictions and pseudo-label assignments in the target domain. The description of the objective
functions are presented in Table 1. The notations used in Table 1 are 𝑁𝑠: number of labelled source
samples, 𝑥(𝑠)𝑖 : 𝑖-th source sample, 𝑦(𝑠)𝑖 : ground truth label of the 𝑖-th source sample, 𝑓𝜃(·): feature
extractor with parameters 𝜃, 𝑔𝜑(·): classifier network with parameters 𝜑, 𝐷(𝑓𝜃(𝑥𝑖)) is the domain
discriminator output, 𝑑𝑖 = 1 if 𝑥𝑖 ∈ source and 𝑑𝑖 = 0 if 𝑥𝑖 ∈ target, 𝐾 : number of clusters, 𝑥: a sample
in cluster 𝐶𝑘, 𝑓𝜃(𝑥): Feature vector of sample 𝑥𝑖 from feature extractor, 𝜇𝑘: is the mean feature vector
of cluster 𝑘, 𝑥(𝑡)𝑗 : 𝑗-th target sample, 𝑦(𝑡)𝑗 : pseudo-label of the 𝑗-th sample, 𝑓𝜃(·): feature extractor with
parameters 𝜃, and s𝑔𝜑(·): classifier network with parameters 𝜑.

The components in the proposed framework are detailed in subsequent subsections.



2.1. Multi-Source and Target Domains

The source domains (𝑆1, 𝑆2, ..., 𝑆𝑛) comprise several labelled datasets derived from diverse remote
sensing sources, each distinguished by variations in geographic location, acquisition time, and sensor
type. Conversely, the target domain (𝑇 ) is an unlabelled dataset that requires domain adaptation to
facilitate accurate scene classification despite distributional changes.

2.2. Contrastive self-supervised pretraining and Feature extraction

Images from both the source and target domains are encoded using a SimCLR-based contrastive learning
framework [16], to acquire domain-invariant representations. A ViT, pretrained through contrastive
learning, is subsequently employed to extract high-level semantic features that demonstrate robustness
to domain shifts. These features are then input into three parallel modules: source classifier, domain
discriminator, and clustering module, facilitating classification, domain alignment, and pseudo-label
generation.

2.3. Source classifier and Domain discriminator

A multilayer perceptron (MLP) functions as the source classifier to examine and categorize various
features or characteristics of the source domain. The Adversarial Domain Discrepancy Gradient Reversal
Layer (ADD-GRL) [17] is employed to mitigate the domain discrepancy between the features of the
source and target domains.

2.4. Adaptive incremental density-based clustering

The adaptive incremental cluster formation with dynamic density estimation and neural network-based
merging algorithm, presented as Algorithm 1. The algorithm is initiated by calculating the global
average distance to inform the local parameter selection. Each incoming feature vector adaptively
determines the 𝑘 neighbours based on the local distance distribution and its relationship to the global
threshold. This process facilitates the dynamic estimation of the neighbourhood radius (𝑒𝑝𝑠𝑖𝑙𝑜𝑛)
and local density, from which sample-specific 𝑀𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠 are derived. Subsequently, the algorithm
identifies 𝑒𝑝𝑠𝑖𝑙𝑜𝑛-neighbours and evaluates whether the sample qualifies as a core point. If so, the
sample is either incorporated into an existing cluster, initiates a new cluster, or prompts merging when
multiple clusters overlap. Merging decisions are executed using a two-stage neural network. The
initial model computes a merge score by evaluating cluster proximity, density, and feature similarity.
Subsequently, the second model dynamically adjusts the merging threshold based on these inputs and
the computed score. Only the pairs that surpassed the threshold are merged. Samples that do not
meet core criteria are initially classified as noise and are later re-evaluated during post-processing for
potential cluster reassignment based on updated local densities.

2.5. Unsupervised deep learning-based multi-objective optimization

The proposed framework integrates unsupervised deep learning with multi-objective optimization to
generate Pareto front rankings, as detailed in our previous work [18]. To enhance the diversity and
generalization within the feature space, crowding distance-based selection [19] is employed to ensure a
well-distributed set of solutions, which is crucial for UDA in geo-spatial contexts. Simulated Binary
Crossover (SBX) [20] is used to effectively balances exploration and exploitation by preserving linear
relationships among parent solutions, thereby aiding spatial and spectral coherence. Furthermore,
polynomial mutation [21] is also used to reinforce spatial and spectral consistency, aligns adapted
features with inherent geo-spatial structures, and enhances cross-domain generalization.



Algorithm 1: Adaptive incremental cluster formation with dynamic density estimation and
neural network-based merging
Input : Target feature set 𝐹𝑡 = {𝑓1, 𝑓2, . . . , 𝑓𝑛}, new feature vector 𝑓new, initial clusters 𝒞,

scaling factor 𝛼1, adaptive range constants 𝑛1, 𝑛2, 𝑛3, 𝑛4

Output : Updated cluster list 𝒞updated
// Precompute global statistics

1 Compute pairwise distance matrix 𝐷 across 𝐹𝑡 ;
2 Compute global distance mean 𝑇 = 1

𝑛(𝑛−1)

∑︀
𝑖̸=𝑗 𝐷𝑖𝑗 ;

3 foreach 𝑓new ∈ 𝐹𝑡 do
// Estimate Local Distance Characteristics

4 Let 𝑆 = {𝐷(𝑓new, 𝑓𝑗) | 𝑓𝑗 ∈ 𝐹𝑡} ;
5 if mean(𝑆) ≤ 𝑇 then
6 Select 𝑘 ∼ Uniform(𝑛1, 𝑛2) ;
7 else
8 Select 𝑘 ∼ Uniform(𝑛3, 𝑛4) ;
9 Sort 𝑆 in ascending order ;

10 Set 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 𝑆[𝑘] ;
// Infer Local Density

11 Let 𝑁𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = {𝑓𝑗 ∈ 𝐹𝑡 | 𝐷(𝑓new, 𝑓𝑗) ≤ 𝑒𝑝𝑠𝑖𝑙𝑜𝑛} ;
12 Compute local density 𝜌 =

|𝑁𝑒𝑝𝑠𝑖𝑙𝑜𝑛|
𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ;

13 Compute adaptive threshold MinPts = 𝛼1 · 𝜌 ;
// Decision: Assign or Evaluate

14 if |𝑁𝑒𝑝𝑠𝑖𝑙𝑜𝑛|≥ MinPts then
15 Identify intersecting clusters 𝒞near = {𝐶𝑖 ∈ 𝒞 | 𝑁𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∩ 𝐶𝑖 ̸= ∅} ;
16 if |𝒞near|= 0 then
17 Create new cluster 𝐶new = {𝑓new}, add to 𝒞 ;
18 else if |𝒞near|= 1 then
19 Append 𝑓new to the matched cluster ;
20 else
21 foreach pair (𝐶𝑎, 𝐶𝑏) ⊆ 𝒞near do
22 Extract features: proximity, compactness, cross-similarity ;
23 Use trained neural model to compute: ;
24 merge_score← Net1(·), 𝜃 ← Net2(·) ;
25 if merge_score ≥ 𝜃 then
26 Merge 𝐶𝑎 ∪ 𝐶𝑏 and add 𝑓new ;

27 else
// Handle potential noise

28 if none of 𝑁𝑒𝑝𝑠𝑖𝑙𝑜𝑛 belongs to any cluster then
29 Mark 𝑓new as temporary noise ;
30 else
31 Find the nearest neighbor 𝑓𝑛𝑛 ∈ 𝑁𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∩ 𝐶𝑗 ;
32 Assign 𝑓new to cluster of 𝑓𝑛𝑛 ;

// Noise Re-Assessment Phase
33 foreach point 𝑝 previously labelled as noise do
34 Recompute neighbors 𝑁𝑝 within local 𝑒𝑝𝑠𝑖𝑙𝑜𝑛𝑝 ;
35 if |𝑁𝑝|≥ MinPts𝑝 then
36 Assign 𝑝 to the nearest valid cluster ;

37 return 𝒞updated



2.6. Pseudo-label generation and refinement

The class-aware adaptive pseudo-labeling algorithm, presented as Algorithm 2, offers a robust approach
to MUDA without dependence on target domain centroids. The algorithm is initiated by calculating
class-specific prototypes from labelled source features. During each training cycle, soft pseudo-labels
are allocated to target samples based on their similarity to these prototypes, utilizing a scaled softmax
function. The reliability of pseudo-labels is assessed using cluster-wise confidence scores, which are
derived from adaptive incremental density-based clustering. Only samples within high-confidence
clusters are fully accepted, while others are incorporated with reduced weight. To ensure class balance,
the top-𝑘 most confident samples per class are selected and employed to update the source prototypes in
a weighted manner, facilitating gradual adaptation to the target domain. Subsequently, prototype-based
contrastive loss is computed to align pseudo-labelled target features with their corresponding prototypes.
The classifier is trained using a combined loss: a standard classification loss for confident samples and a
contrastive loss for alignment.

2.7. Explainable AI (XAI) module and target prediction

The contrastive learning model, adapted through UDA, effectively employs both Grad-CAM-based
activations and global Rollout to make informed decisions regarding scene classification. Upon deter-
mining the optimal set of source and target features, the adaptive incremental density-based clustering
algorithm is applied to the optimal target features to produce pseudo-labels. These pseudo-labels are
then employed to further train the classifier, incorporating both the optimal source and target features.

3. Experimental setup

In order to evaluate performance, four prominent datasets for remote sensing scene classification have
been chosen: AID (𝐴) [22], NWPU-RESISC45 (𝑁 ) [23], PatternNet (𝑃 )[24] and UC Merced (𝑀 ) [25]. To
ensure a uniform basis for comparison, five shared classes such as Farmland, Forest, Parking, Residential
and River present in all four datasets are utilized. Experiments are conducted on an NVIDIA DGX Station
A100 equipped with an AMD EPYC 7742 64-core CPU, four NVIDIA A100 (40 GB) GPUs, and 512 GB of
DDR4 RAM. Training is conducted for 200 epochs, each comprising 100 genetic-algorithm generations.
The crossover and mutation rates are fixed at 0.82 and 0.018, respectively. The neighbor-rank parameters
𝑛1, 𝑛2, 𝑛3, and 𝑛4 are assigned the values 5, 10, 20, and 50. The density scale 𝛼1 is computed as the
standard deviation of local neighbor distances. The confidence gate 𝛼2 and the prototype-contrastive
weight 𝜆proto values are in the range of [0, 1]. The description of the hyper-parameters is presented in
Table 2.

4. Results and performance analysis

The performance analysis of XMUDA-CLAC is conducted using the classification accuracy, average
Receiver Operating Characteristic (ROC) curve, computational cost and worst-case time complexity.
Table 3 presents a comparative classification accuracy analysis of several state-of-the-art UDA methods
applied to remote sensing scene classification. In the (A→ U) task, the proposed framework achieves
an accuracy of 0.965, representing a 0.62% improvement over the next best method (0.959). In the (P
→ N) task, the proposed method surpasses Hy-MSDA (0.953) with an accuracy of 0.962, indicating a
0.94% increase. In the (U→ P) task, the proposed method also demonstrates significant improvements,
with an increase of 0.73%. Specifically, for multi-source domain tasks such as (A, P→ U), (A, N→ U),
(P, U→ N), (A, P, N→ U), and (A, U, P→ N), the proposed method exhibits superiority over existing
methods. The findings highlight the effectiveness of the proposed method in improving accuracy across
various domain adaptation tasks when compared to other leading UDA methods.

Figure 2 illustrates the ROC curves for five classifiers: support vector machine (SVM), multi-layer
perceptron (MLP), XGBoost, random forest, and logistic regression. These classifiers were assessed on



Algorithm 2: Class-aware adaptive pseudo-labeling refinement with class-wise filtering and
dynamic source updates
Input: Source features 𝐹𝑠 with labels 𝑌𝑆 , Target features 𝐹𝑡, Target clusters 𝐶𝑇 (from Algorithm 1),

Top-k value 𝑘, threshold 𝜏 , Contrastive loss weight 𝜆proto, Scaling factor 𝛼2

Output: Refined pseudo-labels and trained classifier
// Initialize Source Class Prototypes

1 for each source class 𝑠 ∈ 𝑌𝑆 do
2 Compute initial prototype 𝜇

(0)
𝑠 = 1

|𝐹 𝑠
𝑠 |

∑︀
𝑥∈𝐹 𝑠

𝑠
𝑓(𝑥);

// Iteratively Update Pseudo-Labels and Source Prototypes
3 for each training epoch 𝑚 do

// Assign Soft Pseudo-Labels with Class-Wise Top-𝑘 Filtering
4 Initialize 𝒫[𝑠] = ∅ for each class 𝑠;

// Pseudo-label generation
5 for each target sample 𝑥𝑖 ∈ 𝐹𝑡 do
6 Identify cluster 𝑐𝑖 of 𝑥𝑖 from 𝐶𝑇 ;
7 Compute soft pseudo-label probabilities 𝑃 (𝑦𝑖 = 𝑠) using:

𝑃 (𝑦𝑖 = 𝑠) =
exp(sim(𝑓(𝑥𝑖), 𝜇

(𝑚−1)
𝑠 )/𝜏)∑︀𝑄

𝑗=1 exp(sim(𝑓(𝑥𝑖), 𝜇
(𝑚−1)
𝑗 )/𝜏)

8 Let 𝑠* be pseudo-label;
9 𝑠* = argmax𝑃 (𝑦𝑖 = 𝑠);

// Class-aware pseudo-label refinement
10 Compute cluster-level confidence 𝛾𝑐𝑖 using intra-cluster similarity or density;
11 Compute threshold 𝜏𝑐𝑖 = 𝛼2 ·mean(𝛾𝑐𝑖);
12 if 𝛾𝑐𝑖 ≥ 𝜏𝑐𝑖 then
13 Add (𝑥𝑖, 𝑃 (𝑦𝑖 = 𝑠*), 𝑓(𝑥𝑖),weight = 1.0) to 𝒫[𝑠*];
14 else
15 Add (𝑥𝑖, 𝑃 (𝑦𝑖 = 𝑠*), 𝑓(𝑥𝑖),weight = 0.5) to 𝒫[𝑠*];

// Top-k Selection
16 for each class 𝑠 do
17 Sort 𝒫[𝑠] by confidence and retain top-𝑘 samples;

// Update Source Prototypes from Top-k Pseudo-Labelled Target Samples
18 for each class 𝑠 do
19 Compute updated prototype 𝜇

(𝑚)
𝑠 =

∑︀
(𝑥𝑖,𝑤𝑖)

𝑤𝑖·𝑓(𝑥𝑖)∑︀
𝑤𝑖

from top-𝑘 𝒫[𝑠];

// Compute Contrastive Loss
20 for each pseudo-labelled sample (𝑥𝑖, 𝑓(𝑥𝑖)) do
21 Compute:

ℒproto(𝑥𝑖) = − log
exp(sim(𝑓(𝑥𝑖), 𝜇

(𝑚)
𝑠* )/𝜏)∑︀𝑄

𝑗=1 exp(sim(𝑓(𝑥𝑖), 𝜇
(𝑚)
𝑗 )/𝜏)

// Classifier Training
22 Compute cross-entropy loss ℒcls over confident samples;
23 Total loss: ℒtotal = ℒcls + 𝜆proto · ℒproto;
24 Update network parameters using ℒtotal;
25 return Refined pseudo-labels 𝑠*;

domain adaptation tasks (A, P, N→ U) and (A, U, P→ N). Each curve depicts the mean performance
across all five scene classes. The Area Under the Curve (AUC) scores indicate that the MLP classifier
achieves the highest performance, with AUC values of 0.99 and 0.98 for the respective tasks.

Table 4 presents a comparative computational cost analysis using parameter count, GFLOPs, model
size, and training time for (A, U, P→ N) across various state-of-the-art models. Although the XMUDA-



Table 2
Hyper-parameters, roles, search spaces, selection rules, and chosen values.

Param Role Search space Selection rule Chosen

𝑛1, 𝑛2 dense-region neighbor rank [3, 8], [8, 12] best proxy rank-sum 5, 10
𝑛3, 𝑛4 sparse-region neighbor rank [15, 30], [40, 60] best proxy rank-sum 20, 50
𝜆proto prototype-contrastive weight [0.1, 0.6] entropy is minimized 0.3
Top-𝑘 per-class target selection {10, 20, 50} stability vs. coverage 20

Table 3
Comparison of classification accuracy on multi-source domain adaptation methods across various domain
combinations

Domain M3SDA [7] MFSAN [8] LCt-MSDA [10] T-SVDNet [9] MCC-DA [26] PTMDA [27] SUMDA [28] RRL [29] Hy-MSDA [15] XMUDA-CLAC

(A→ U) 0.887 0.912 0.873 0.854 0.940 0.944 0.944 0.946 0.959 0.965
(P→ N) 0.870 0.907 0.868 0.855 0.931 0.928 0.939 0.937 0.953 0.962
(U→ P) 0.879 0.910 0.870 0.859 0.938 0.930 0.933 0.933 0.947 0.954

(A, P→ U) 0.883 0.919 0.890 0.865 0.950 0.951 0.949 0.944 0.968 0.972
(A, N→ U) 0.895 0.920 0.905 0.860 0.945 0.948 0.950 0.951 0.972 0.977
(U, P→ N) 0.917 0.940 0.908 0.881 0.967 0.968 0.965 0.962 0.978 0.978

(A, P, N→ U) 0.901 0.923 0.898 0.869 0.957 0.954 0.954 0.955 0.974 0.976
(A, U, P→ N) 0.922 0.928 0.886 0.884 0.964 0.960 0.963 0.955 0.977 0.978

(a) (A, P, N→ U) (b) (A, U, P→ N)

Figure 2: Classifier performance (AUC-ROC) across MUDA tasks (a) (A, P, N→ U) (b) (A, U, P→ N).

Table 4
Computational cost analysis for (A, U, P→ N) (↓ indicates lower is better).

Models Parameters (×106)↓ GFLOPs 𝑃𝑠↓ Size (MB)↓ Training Time (h)↓

PTMDA [27] 30.5 32.5 141.5 9.4
SUMDA [28] 31.1 35.6 160.5 14.0
RRL [29] 30.8 32.1 146.5 8.2
Hy-MSDA [15] 29.5 30.2 113.8 7.8
XMUDA-CLAC 27.8 28.6 110.4 8.1

CLAC achieves significant classification accuracy utilizing ViT+SimCLR, the slight increase in training
time is negligible, which offers scalable solution compared to some of the existing benchmark models.

The comparative time complexity analysis of XMUDA-CLAC with some of the state-of-art approaches
are detailed in Table 5. The notations used in Table 5 are 𝑁𝑠: number of source images, 𝑁𝑡: number of
target images, 𝑑: feature width, 𝐶: number of classes, 𝐾: number of target clusters, 𝐸𝑝𝑟𝑒, 𝐸𝑐𝑙𝑠, 𝐸𝑎𝑑𝑣

are the epochs for SimCLR pretrain, source classifier, adversarial alignment, 𝐺: number of generations,



Table 5
Comparative time complexity analysis

Method Time complexity

Hy-MSDA [15] 𝑇total = 𝑂(𝐸 (𝑁𝑠 +𝑁𝑠𝑑𝑁𝑡)𝐹bwd) +𝑂(𝑁𝑠𝑑𝑁𝑡 𝐹fwd) +𝑂(𝑁2
𝑠𝑑𝑁𝑡)

RRL [29] 𝑇total = 𝑂(𝐸𝑠𝑁𝑠𝐹bwd +𝑁𝑡𝐹fwd) + 𝐸 ·𝑂
(︁
(𝑁𝑠 +𝑁𝑡)𝐹bwd + 𝑏2 +𝑁𝑡𝐹fwd

)︁
XMUDA-CLAC 𝑇total = 𝑂

(︁
𝐸pre(𝑁𝑠 +𝑁𝑡)𝐹ViT + (𝑁𝑠 +𝑁𝑡)𝐹ViT + 𝐸cls𝑁𝑠𝐹𝑐 + 𝐸adv(𝑁𝑠 +𝑁𝑡) (𝐹ViT + 𝐹𝑑)

)︁
+𝐺𝑇gen

𝑇gen = 𝑂
(︁
𝑁𝑡𝐹ViT +𝑁𝑡 log𝑁𝑡 +𝑁𝑡𝐶𝑑+ 𝑃 2𝑀

)︁

(a) (b) (c) (d)

Figure 3: Visualization of attention shift before and after domain adaptation in (A, U, P→ N)

𝑃 : population size , 𝑀 : number of objectives, 𝐹𝑉 𝑖𝑇 : ViT per sample cost, 𝐹𝑐: classifier cost and 𝐹𝑑:
discriminator cost, 𝑁𝑠𝑑: number of source domains, 𝐸: training epochs, 𝐹fwd: per-sample cost of a
forward pass, 𝐹bwd: per-sample cost of one forward+backward pass, 𝐸𝑠: number of epochs for the
initial source-only pretraining, 𝐸: number of outer training epochs, and 𝑏: mini-batch size. From the
table, it is observed that the time complexity of the proposed approach is at par with existing models,
while performing well with respect to classification accuracy.

4.1. Explainability of domain shift and target scene prediction

The explainability of the XMUDA-CLAC are performed using Grad-CAM and Attention Rollout methods
and are presented in Figures 3 and 4. Figure 3 depicts the alteration in attention distribution within a
contrastive learning-based ViT model, observed before and after domain adaptation on a target image
from NWPU-RESISC45 dataset. Figure 3a shows the original river scenario. Figure 3b presents the
Grad-CAM output from the source-only model, which is trained on AID, UC Merced, and PatternNet,
highlighting the initial regions of attention. Figure 3c displays the attention map post-adaptation. The
regions in red/yellow signify high attention, whereas blue/green regions indicate low attention. Figure
3d exhibits the Attention Change Map, where red/yellow areas highlight shifts in attention and black
areas denote stable focus, underscoring the interpretability improvements resulting from adaptation.
Figure 4 presents a visual elucidation of scene prediction on a target image from NWPU-RESISC45
dataset utilizing a contrastive learning-based UDA model.

Figure 5 presents a two-dimensional UMAP projection that illustrates the alignment between the
source domains, target domain, updated centroids, and top-k filtered pseudo-labelled samples in a UDA
scenario (A, U, P → N). Source samples are represented as circles, target samples as crosses, top-k
samples are outlined with circular borders, and the updated centroids are depicted as black pentagons.

5. Ablation study

Table 6 presents an ablation study evaluating the classification accuracy of various combinations of
feature extractors and objective functions for UDA across multiple remote sensing datasets. The study



(a) (b) (c) (d)

Figure 4: Visual explanation of target scene prediction Using Grad-CAM and Attention Rollout (A, U, P→ N)

Figure 5: UMAP Visualization of Source-Target Alignment and Pseudo-Label Distribution in (A, U, P→ N)

Table 6
An ablation study on classification accuracy to evaluate the impact of different feature extractors and objective
function combinations for UDA

Feature ex-
tractor

ℒcls ℒadv ℒclust ℒpl (A→ U) (P→ N) (U→ P) (A, P→ U) (A, N→ U) (P, U→ N) (A, P, N→ U) (A, U, P→ N)

ResNet50
✓ ✓ ✓ 0.894 0.883 0.886 0.876 0.895 0.901 0.891 0.887
✓ ✓ ✓ ✓ 0.927 0.903 0.914 0.903 0.914 0.923 0.907 0.915

ViT
✓ ✓ ✓ 0.901 0.894 0.894 0.903 0.904 0.915 0.901 0.908
✓ ✓ ✓ ✓ 0.943 0.914 0.928 0.923 0.921 0.934 0.935 0.932

ViT +
SimCLR

✓ ✓ ✓ 0.921 0.913 0.903 0.915 0.903 0.907 0.924 0.905
✓ ✓ ✓ ✓ 0.965 0.962 0.954 0.972 0.977 0.978 0.976 0.978

examines four objective functions, utilizing feature extractors such as ResNet50, Vision Transformer
(ViT), and ViT pretrained with SimCLR. Among the configurations tested, the combination of ViT
with SimCLR and the full set of objective functions achieves the highest classification accuracy across
all eight domain adaptation tasks, including both single-source and multi-source scenarios. Notably,
it attains superior performance on tasks such as (A → U) (0.965), (A, N → U) (0.977), and (A, U, P
→ N) (0.978). These results highlight the efficacy of transformer-based representations enhanced by
contrastive learning and the synergistic effect of multiple complementary objective functions.

6. Conclusion

This study introduces a comprehensive XMUDA-CLAC framework for remote sensing scene classifica-
tion in the context of significant domain shifts. By integrating contrastive-pretrained ViTs with adaptive



incremental density-based clustering, the framework effectively extracts domain-invariant features
and generates high-confidence pseudo-labels for the unlabelled target domain. The robustness to
class imbalance and feature drift is further enhanced through class-aware pseudo-label refinement and
dynamic centroid alignment. By framing pseudo-labeling, clustering, and domain alignment as a unified
multi-objective optimization problem, the framework facilitates reliable learning in the absence of target
labels. Explainability is incorporated through XAI techniques, such as Grad-CAM and attention rollout,
thereby improving the interpretability and trustworthiness of model predictions. Experimental results
demonstrate the framework’s superior accuracy and generalization compared with state-of-the-art
UDA methods. Although this approach incurs additional computational cost due to its optimization
complexity, it offers solution with better classification accuracy, scalability and interpretability. Future
research endeavors will focus on developing a multi-source universal domain adaptation (DA) variant of
XMUDA-CLAC, incorporating minimum-cost-flow matching and conformally calibrated energy-based
mechanisms for unknown rejection.

Declaration on Generative AI

During the preparation of this work, the author(s) used ChatGPT, Grammarly to: Grammar and spelling
check. After using these tool(s)/service(s), the author(s) reviewed and edited the content as needed and
take(s) full responsibility for the publication’s content.
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