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Introduction to Clustering Methods



Geo-referenced Time-series: why clustering? 
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Clustering as unsupervised learning 

… the task of partitioning a 
set of objects in such a way 
that objects in the same 
subset (called a cluster) are 
more similar (in some 
specific sense defined by the 
analyst) to each other than 
to those in other clusters.
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Given 

• , a set of  objects 

• a dissimilarity function  that is symmetric in its arguments and assigns a non-negative value to 

any pair  of non-empty subsets of ; 

the goal is to find a partition of  into  non-overlapping sets , called clusters, that 
solves a minimization problem of type

𝒳 = {X1, …, Xn} n ≥ 2

d
(𝒳1, 𝒳2) 𝒳

𝒞 𝒳 K {𝒳1, …, 𝒳K}

Clustering as unsupervised learning 

𝒞 = arg min
𝒞′ 

φ(𝒞′ ; d)

over the class of all possible partitions  of .K− 𝒞′ 𝒳



A Copula-based approach 
Emerging areas: identifying sets of time series that exhibit comovement, or 
tail dependence behavior, regardless of marginal modeling. 

Examples in environmental sciences: analyzing joint extremes such as 
maxima of precipitations, temperature, or modeling flood risks. 



time series

Step C1: Copula-based dependence
A copula-based variable clustering assumes that: 

• a set  of real-valued continuous random variables  associated with an iid sample 

  for every ; 

• the rv’s are continuous, so that any copula among them is unique;

𝒳 X1, …, Xn

(xti)t=1,…,T ∼ Xi i = 1,…, n
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Dependence Retrieval

Patton (2012), Neumeyer et al. (2019)
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Dependence Retrieval
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Dependence Retrieval

Patton (2012), Neumeyer et al. (2019)

̂ε1

̂ε2



Dependence Retrieval

copula
copula

̂ε1

̂ε2



Step C2: Detection of comovements 
A copula-based variable clustering assumes that: 

• the dissimilarity function    

• only depends on the copula of , regardless any possible permutation of the 
elements in a cluster; 

• is related to the degree of comonotonicity among rv’s (i.e. closeness to the upper bound of 
the Fréchet class). 

d = d(𝒳1, 𝒳2)

(𝒳1, 𝒳2)

Only dependence 

No marginals 
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 Given a copula matrix  each pairwise copula  is transformed into a numerical dissimilarity  

Comonotone-based clustering requires  to satisfy:        

 if ,       where .   

  evaluates how far  is from the (perfect) comonotonicity copula 

C Cij Δij

d1,1

d1,1(C) = 0 C = M M(u, v) = min{u, v}
d1,1 Cij M (Fuchs et al. 2021) 



Copula-based time series clustering – model architecture

𝒟ts Cts UK×nΔts

Dependence 
Retrieval 

Dissimilarity 
Mapping 

Cluster  
Validation 

The procedure will be of algorithmic nature and data-driven (eventually with some working model 
assumptions). 

Each partition in  clusters is represented by a membership matrix  of order  so that each 

entry  belongs to {0, 1} (or  in a Fuzzy/soft context) and the sum of the entries in each 
column is 1 

K U (K × n)
Uki [0,1]



Clustering with spatial constraints



✤ Time series: monthly maximum temperatures of the summer months (JJA), derived from 
ERA5 reanalysis data, spanning the period from 1960 to 2024.  

✤ Locations: multiple spatial points across the Italian territory. We restrict our attention to land 
areas by excluding sea points, selecting a subset of n=105 grid points. 

✤ Goal: cluster the relative time series not based on absolute temperature levels, but on how 
strongly their fluctuations are statistically dependent over time, for example, locations that 
tend to heat up simultaneously, even if the temperature magnitudes differ. 

First application: maximum temperatures 



Partitioning Around Medoids (PAM)
- PAM is a clustering algorithm that groups data points into k clusters. 

- Each cluster is represented by a medoid, which is a real data point acting as the most central or 
representative object of the cluster. 

- The goal is to make each cluster as compact and consistent as possible, minimizing the total 
dissimilarity between points and their medoid.

PAM finds representative data 
points (medoids) that best describe 

k compact and well-separated 
clusters
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• K = 8 clusters: reasonable 
compromise between the optimal 
Average Silhouette Index and the 
need for a clear and interpretable 
spatial visualization  

•  Groups of locations whose time 
series exhibit similar comovement 
patterns

First application: maximum temperatures 



Precipitation maxima

• Partitioning Around Medoids (PAM) 

  

• K = 8 clusters: reasonable 
compromise between the optimal 
Average Silhouette Index and the 
need for a clear and interpretable 
spatial visualization  

•  Groups of locations whose time 
series exhibit similar comovement 
patterns

Second application: maximum precipitations 
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Spatial heterogeneity! 
Using only temporal information can lead to heterogeneous clusters that are 
hard to interpret:
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Solution: introduce spatial constraints



Semi-supervised learning algorithms 
Given  

• a set of real-valued continuous random variables   associated with an iid sample 

  for every ;  

• a p-dimensional vector  associated with each  for every , that represent the spatial 

(e.g. geographic) location where  is observed; 

• a dissimilarity function  for rv’s; 

the goal is to find an algorithm to group variables which are  
similar in their statistical attributes as well as in their spatial location. 

X1, …, Xn

(xti)t=1,…,T ∼ Xi i = 1,…, n

s⊤
i Xi i = 1,…, n

Xi

d

Feature 
Information

Spatial 
Information



Additional information is associated with the multivariate time series in the form of a set   
 is converted to an element in .  

Two main types of matrices can be obtained: 

• an incidence matrix , where each entry  indicates whether the i–th and j–th time series 

components are related (value equals to 1) or not (value equal to 0). 

• a distance matrix  , where each entry  only depends on the (Euclidean) distance 

between  and 

Dsp = {s1, …, sn}
Dsp Diss(n)

Δsp = (Δsp
ij ) ∈ {0,1}n Δsp

ij

Δsp = (Δsp
ij ) ∈ [0, + ∞]n Δsp

ij

si sj

Spatial proximity retrieval



Semi-supervised learning algorithms with soft constraints 

(De Carvalho et al, 2023; Legendre and Gauthier, 2014; B. and Durante, 2024)

Δts
11 ⋯ Δts

1n
⋯ ⋯ ⋯

Δts
n1 ⋯ Δts

nn

Δsp
11 ⋯ Δsp

1n
⋯ ⋯ ⋯

Δsp
n1 ⋯ Δsp

nn

Temporal dissimilarity Spatial dissimilarity

(1 − α) α

Hyper-parameter Hyper-parameter

⊕

Aggregation function

Δα =

Convex combination Hadamard product Geodesic in the Riemannian manifold Corr(n)
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Evolution of the Silhouette Index for 
.  

Orange points: Silhouette Index 
computed with respect to the temporal 
matrix 
Blue points: Silhouette Index computed 
with respect to the spatial matrix. 
Silhouette index =  ratio of the difference 
between minimal inter-cluster 
dissimilarity and intra-cluster dissimilarity 
to their maximum.

α ∈ [0,1]

How to choose  ? α
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Conclusions



Conclusions 
• Copula functions offer a natural way to describe joint comovements among time series, that 

are particularly useful to analyze joint extremes such as maxima of precipitations, temperature, 
or modeling flood risks. 

• Using only temporal information can lead to heterogeneous clusters that are hard to interpret. 

• Copula-based algorithms can be based on a “regularized” dissimilarity matrix taking into 
account the spatial information. 

Open problems and future directions 

• Choice of the hyper-parameter . 

• Introduce the ocean in the analysis 

• Learning Joint Spatio-Temporal Patterns for Multivariate Anomaly Detection

α
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