

SEMI-SUPERVISED AND MULTI-LABEL CLASSIFICATION OF REMOTELY SENSED IMAGES

Sašo Džeroski (w/ Marjan Stoimchev, Sintija Stevanoska, Jurica Levatic, Dragi Kocev, Michelangelo Ceci)

Head of Department of knowledge technologies, Jožef Stefan Institute, Ljubljana, Slovenia

Professor, Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

Visiting professor, European Space Agency, Frascati, Italy

MULTI-TARGET PREDICTION & MULTI-LABEL CLASSIFICATION

SINGLE-TARGET vs. MULTI-TARGET PREDICTION (classification, regr.)

		Descripti	ve space		Target space			
Example 1	1	TRUE	0.49	0.69	Yes			
Example 2	2	FALSE	0.08	0.07	Yes			
Example 3	1	FALSE	0.08	0.07	No			
Example 4	2	TRUE	0.49	0.69	Yes			
Example 5	3	TRUE	0.49	0.69	No			
Example 6	4	FALSE	0.08	0.07	Yes			

		Descripti	ve space		Target space			
Example 1	1	TRUE	0.49	0.69	0.68	0.60	3.91	
Example 2	2	FALSE	0.08	0.07	0.56	0.99	7.59	
Example 3	1	FALSE	0.08	0.07	0.10	1.69	7.57	
Example 4	2	TRUE	0.49	0.69	0.08	0.77	8.86	
Example 5	3	TRUE	0.49	0.69	0.11	3.51	2.50	
Example 6	4	FALSE	0.08	0.07	0.43	2.10	8.09	
					•••	•••		

THE RATIONALE FOR MULTI-TARGET PREDICTION

It makes sense to predict inter-related targets jointly

In weather forecasting, we have multiple tasks

- Predicting the outlook (sunny, overcast, rain): STC
- Predicting the temperature (in degrees Celsius): STR

- Predicting the weather: MTP
 - Outlook
 - Temperature
 - Humidity
 - Quantity of precipitation ...

MULTI-LABEL CLASSIFICATION: The task and an example

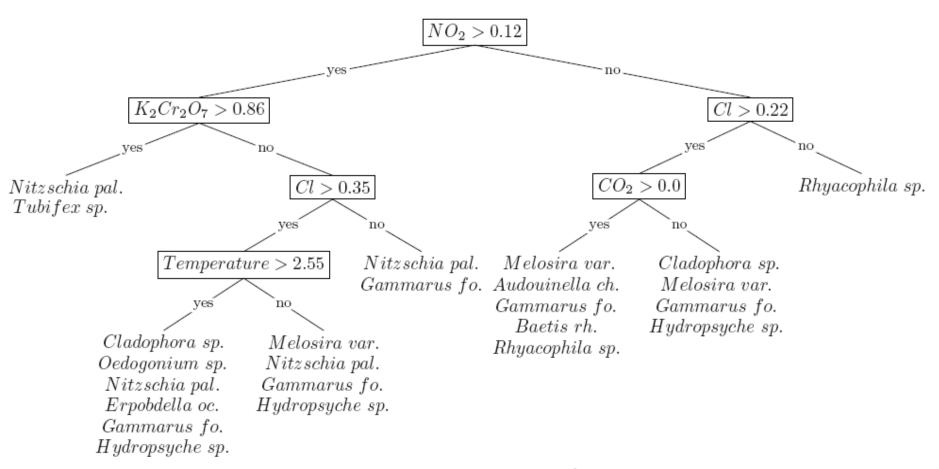
Learning models that simultaneously predict several nominal/binary target variables

Input: A vector of descriptive variables' values

Output: A vector of several binary targets' values

		Desc	riptiv	e vari	ables						Tar	get v	arial	oles					
Sample ID	Temperature	K ₂ Cr ₂ O ₇	^z ON	Ol	CO ₂	Cladophora sp.	Gongrosira incrustans	Oedogonium sp.	Stigeoclonium tenue	Melosira varians	Nitzschia palea	Audouinella chalybea	Erpobdella octoculata	Gammarus fossarum	Baetis rhodani	Hydropsyche sp.	Rhyacophila sp.	Simulim sp.	Tubifex sp.
ID1	0.66	0.00	0.40	1.46	0.84	 1	0	0	0	0	1	1	0	1	1	1	1	1	1
ID2	2.03	0.16	0.35	1.74	0.71	 0	1	0	1	1	1	1	0	1	1	1	1	1	0
ID3	3.25	0.70	0.46	0.78	0.71	 1	1	0	0	1	0	1	0	1	1	1	0	1	1

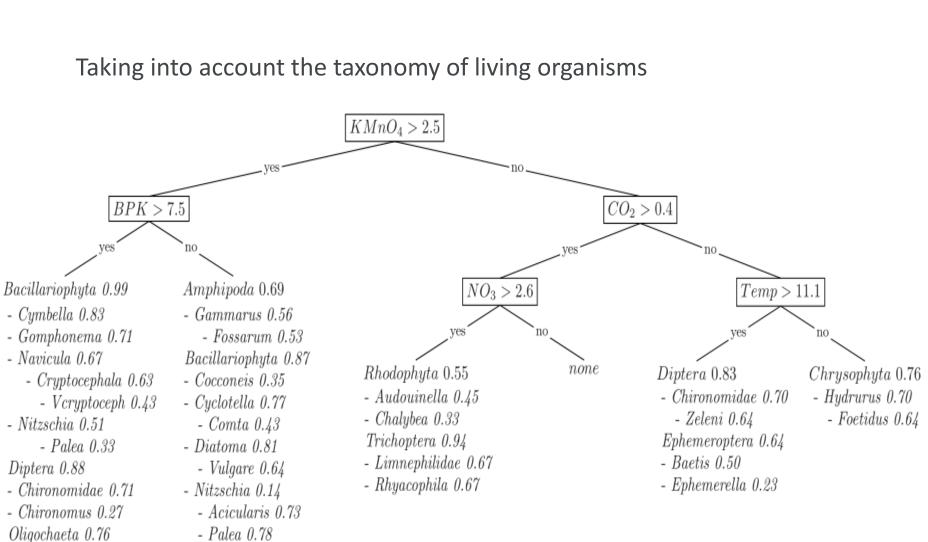
A DECISION TREE FOR MULTI-LABEL CLASSIFICATION



HIERARCHICAL MULTI-LABEL CLASSIFICATION

		Descripti	ive space		Target space
Example 1	1	TRUE	0.49	0.69	1 1/1 1/1 1/1/2 1/2/1
Example 2	2	FALSE	0.08	0.07	1 1/1 1/2 1/1/1 1/2/1 1/2/2
Example 3	1	FALSE	0.08	0.07	1 1/2 1/2/1
Example 4	2	TRUE	0.49	0.69	1 1/1 1/2 1/2 1/2/1 1 1/4 1/4 1/4 1/4 1/3 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4

A DECISION TREE FOR HIERARCHICAL MULTI-LABEL CLASSIFICATION



- Tubifex 0.61

- Synedra 0.57

MULTI-LABEL CLASSIFICATION OF REMOTELY SENSED IMAGES

Ankara	UCM	DFC-15	AID	MLRSNet	BigEarthNet-19	BigEarthNet-43
Bare Soil, Crop (Type-A), Crop (Type-B), Unpaved Road, Grass (Type-A)	bare-soil, buildings, cars, pavement, tanks	impervious, vegetation, building, tree	bare-soil, buildings, cars, court, pavement, trees	bare soil, buildings, grass, trail, wind turbine	Urban fabric, Industrial or commercial units, Inland waters	Discontinuous urban fabric, Industrial or commercial units, Water courses
	C. C					
Grass Covered Soil, Bare Soil, Crop (Type-D), Asphalt Pavement, Grass (Type-A)	buildings, pavement, sand, tanks, trees	impervious, vegetation, building	bare-soil, buildings, cars, grass, pavement, tanks, trees	buildings, field, terrace, trail, trees	Arable land, Agro-forestry areas	Non-irrigated arable land, Agro-forestry areas

HIERARCHICAL MULTI-LABEL CLASSIFICATION OF **REMOTELY SENSED IMAGES (CLC nomenclature)**

Rev CLC Level 1 Rev CLC Level 2

Rev CLC Level 3

bda Complex cultivation patterns

cbc Transitional woodland shrub

cba Natural grassland and sparsely vegetated areas

cbb Moors, heathland and sclerophyllous vegetation

bdc Agro-forestry areas caa Broad-leaved forest

cab Coniferous forest cac Mixed forest

a Artificial surfaces

aa Urban fabric

ab Industrial, commercial and transport units

b Agricultural ba Arable land

areas

bb Permanent crops

bc Pastures

bd Heterogeneous

agricultural areas

c Forests and ca Forests

semi-natural

areas

cb Shrub and/or herbaceous

vegetation association

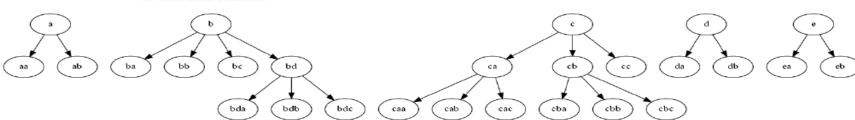
cc Beaches, dunes, sands

da Inland wetlands d Wetlands

db Coastal wetlands

e Water bodies ea Inland waters

eb Marine waters



SEMI-SUPERVISED MULTI-TARGET PREDICTION

Different types of structured outputs

MT/ML Classification, MTP
 Hierarchical MLC/MTR

Different supervision levels

- Fully supervised
- Semi-supervised
 - Missing labels
 - Partial labels
- Unsupervised

Two example tasks

- MTR w partial labels
- Semi-supervised HMLC

		Descripti	ve space		Target space			
Example 1	1	TRUE	0.49	0.69	?	0.60	3.91	
Example 2	2	FALSE	0.08	0.07	0.56	0.99	7.59	
Example 3	1	FALSE	0.08	0.07	?	?	?	
Example 4	2	TRUE	0.49	0.69	0.08	0.77	8.86	
Example 5	3	TRUE	0.49	0.69	0.11	?	?	
Example 6	4	FALSE	0.08	0.07	0.43	2.10	8.09	
		••	•		•••	•••		

				I	
		Descripti	ive space		Target space
Example 1	1	TRUE	0.49	0.69	1/1 1/2 17/1 1/2/1/2/1/2/1/2/1/2/1/2/1/2/1/2/1/2/1
Example 2	2	FALSE	0.08	0.07	?
Example 3	1	FALSE	0.08	0.07	?
Example 4	2	TRUE	0.49	0.69	
•••		••	••		

LEARNING TREES FOR MULTI-TARGET PREDICTION WITH PREDICTIVE CLUSTERING

To construct a tree T from a training set S:

If the examples in S have low variance,

construct a leaf labeled target(prototype(S))

Otherwise:

- Select the best attribute A with values v1, ..., vn, which reduces the most the variance (measured according to a given distance function d)
- Partition S into S1, ..., Sn according to A
- Recursively construct subtrees T1 to Tn for S1 to Sn
- Result: a tree with root A and subtrees T1, ..., Tn

The variance is assessed across the multiple targets

SELECTING THE BEST TEST IN A PCT

Select the test that maximizes variance reduction Calculated in line 4

procedure BestTest(*E*)

1:
$$(t^*, h^*, \mathcal{P}^*) = (none, 0, \emptyset)$$

- 2: for each possible test t do
- 3: $\mathcal{P} = \text{partition induced by } t \text{ on } E$

4:
$$h = Var(E) - \sum_{E_i \in \mathcal{P}} \frac{|E_i|}{|E|} Var(E_i)$$

5: **if** $(h > h^*) \land Acceptable(t, \mathcal{P})$ **then**

6:
$$(t^*, h^*, \mathcal{P}^*) = (t, h, \mathcal{P})$$

7: **return** $(t^*, h^*, \mathcal{P}^*)$

$$Var(E) = \sum_{i=1}^{T} Var(Y_i).$$

SEMI-SUPERVISED LEARNING WITH PCTs

New definition of variance that includes both targets and attributes, e.g., for MTR

$$= \frac{1}{T+D} \cdot \left(w \cdot \sum_{i=1}^{T} Var(Y_i) + (1-w) \cdot \sum_{j=1}^{D} Var(X_j) \right)$$

T = #target attributes, D = #descriptive attributes

$$E = E_{\text{Labeled}} \cup E_{\text{Unlabeled}}$$

Variances only calculated for non-missing values

SEMI-SUPERVISED LEARNING WITH PCTs

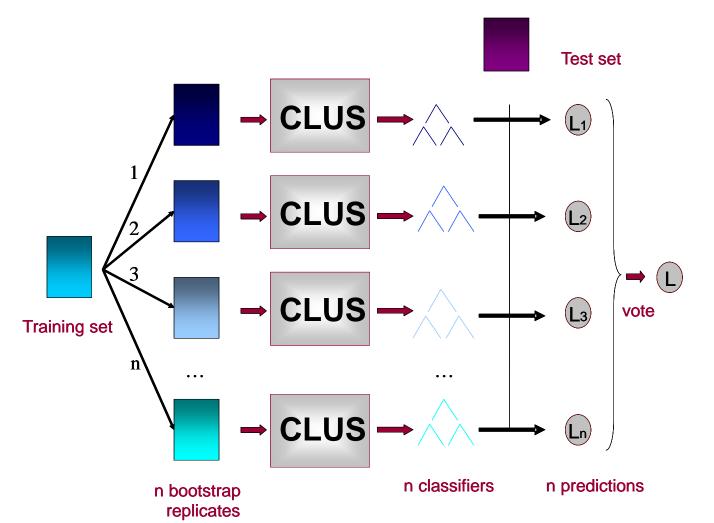
• $Var_f(E,Y) = Var/Gini/Weighted\ Euclidean\ for$ MTR/MLC/HMLC

•
$$Var_f(E, X) = \frac{1}{D} \left(\sum_{X_i \text{ numeric}} Var(E, X_i) + \sum_{X_j \text{ nominal}} Gini(E, X_j) \right)$$

- w = weight parameter, trades-off focus on
 - Prediction (*w*=1)
 - Clustering (w=0)
- w tuned by internal cross-validation on labeled part

LEARNING TREE ENSEMBLES

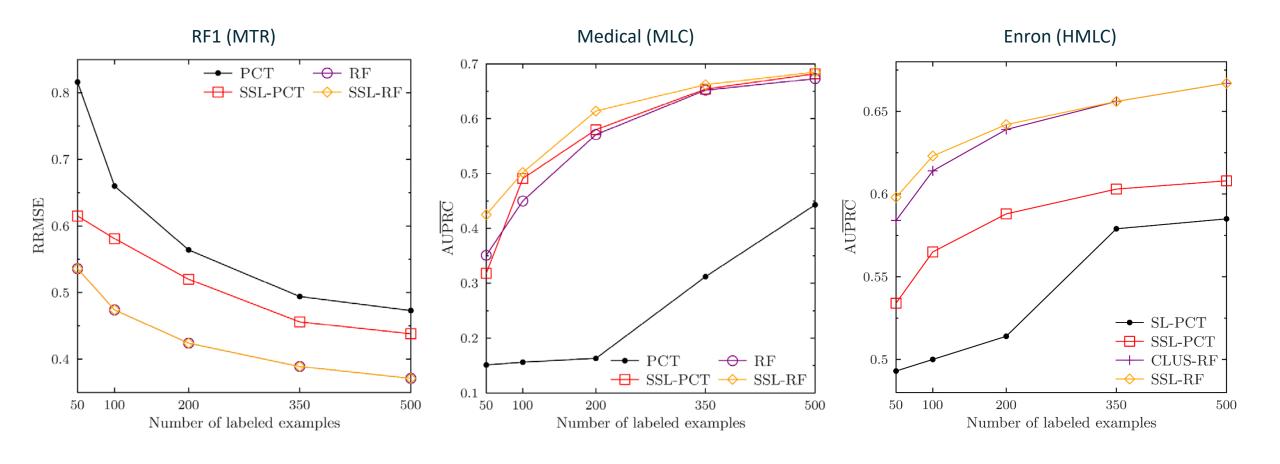
Typical approach: Generate different samples of the data (subsets of rows, subset of columns, or both), then learn a tree on each



	Methods	•		Numb	er of lab	eled exai	mples			
	ivietilous		25	50	100	200	350	500		
			Binary c	lassifica	tion					
PCT	VS.	SSL-PCT	0.009	0.388	0.066	0.005	0.019	0.019		
RF	VS.	SSL-RF	0.529	0.192	0.002	0.099	0.093	0.012		
		M	ulti-class	classifi	ication					
PCT	VS.	SSL-PCT	0.248	0.084	0.014	0.007	0.192	0.081		
RF	VS.	SSL-RF	0.563	0.011	0.011	0.003	0.004	0.02		
Regression										
PCT	VS.	SSL-PCT	0.011	0.01	0.004	0.367	0.48	0.583		
RF	VS.	SSL-RF	0.008	0.065	0.008	0.023	0.034	0.126		
		N	lulti-targ	et regre	ession					
PCT	VS.	SSL-PCT	0.0	93 0	.022	0.028	0.022	0.009		
RF	VS.	SSL-RF	0.9	59 0	.445	0.445	0.333	0.445		
		M	ulti-labe	l classif	ication					
PCT	VS.	SSL-PCT	0.0	13 0	.008	0.008	0.093	0.053		
RF	VS.	SSL-RF	0.2	41 0	.415	0.262	0.308	0.575		
		Hierarch	ical mult	ti-label	classifica	ation				
PCT	VS.	SSL-PCT	0.8	34 0	.093	0.028	0.028	0.028		
RF	VS.	SSL-RF	0.3	<u>45 0</u>	.345	0.249	0.345	0.345		

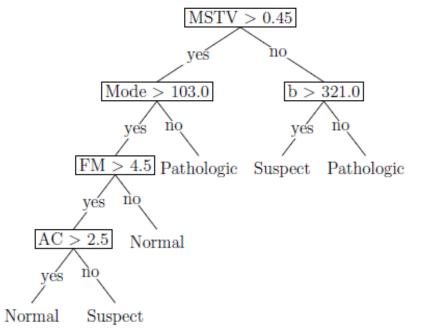
SSL vs. SL: PERFORMANCE

SSL vs. SL PERFORMANCE

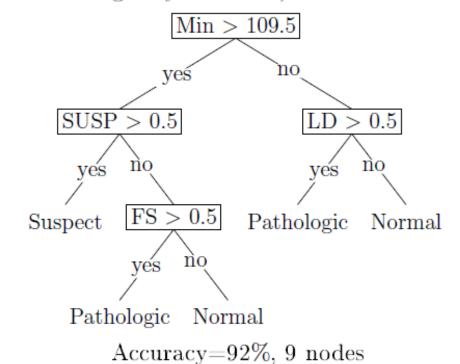


SSL OF DECISION TREES: ACCURACY & INTERPRETABILITY

Multi-class classification (Cardiotocogramy3 Dataset)



Accuracy=81%, 11 nodes



(c) SL-PCT, 50 labeled examples

(d) SSL-PCT, 50 labeled and 2076 unlabeled examples

Article

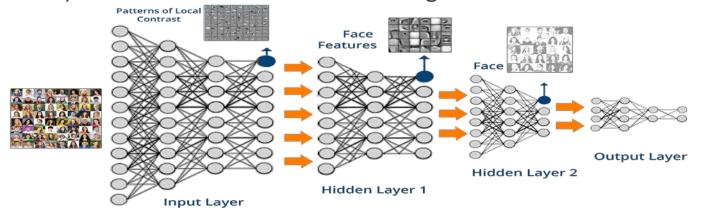
Deep Network Architectures as Feature Extractors for Multi-Label Classification of Remote Sensing Images

Marjan Stoimchev 1,2,* Dragi Kocev 1,2,3 and Sašo Džeroski 1,2 b

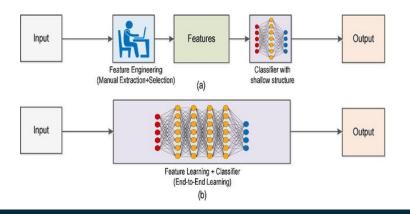
COMBINING DEEP NEURAL NETWORKS AND ENSEMBLES OF PREDICTIVE CLUSTERING TREES FOR MULTI-LABEL CLASSIFCATION OF RSI

CONVOLUTIONAL DEEP NEURAL NETWORKS

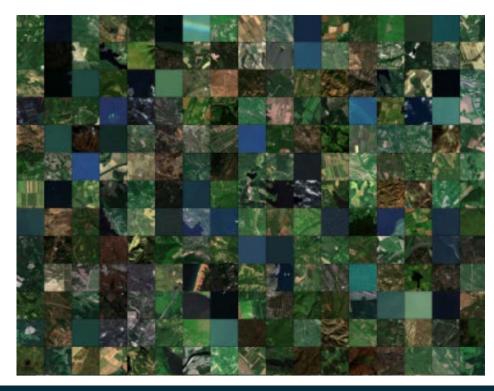
CNNs are DNNs that include computer vision ideas (convolutional filters) and can learn features from images



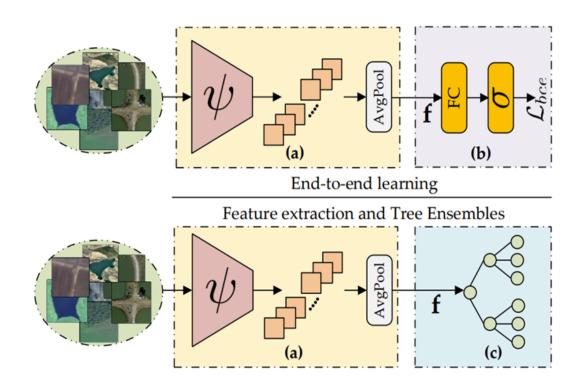
This is the key to the success of NNs: End-to-end learning

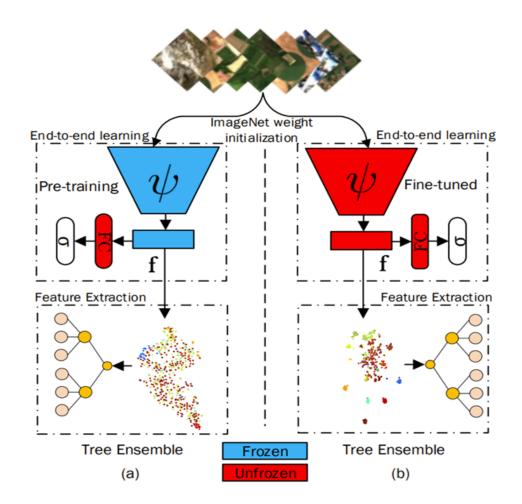


CONVOLUTIONAL NEURAL NETWORKS ARE GREAT FOR ANALYZING IMAGES (incl. remotely sensed/ satellite images)



MLC BY FEATURE EXTRACTION W DNNs + PCTs





MLC BY FEATURE EXTRACTION W DNNs + PCTs vs. End-To-End DNNs

Deep network architectures used:

- VGGs (16 and 19)
- ResNets (34, 50, 152)
- EfficientNets (BO, B1, B2)

Feature extraction:

- With weights as pre-trained (ImageNet)
- With weights fine-tuned

Evaluation measure: Ranking Loss

Learning methods:

- Fnd-to-end
- Random Forests / Extra Trees

Datasets:

buildings.

pavement,

sand.

tanks, trees

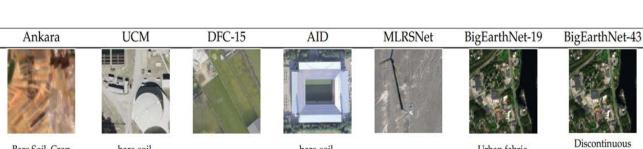
Bare Soil, Crop

(Type-D),

Asphalt Pavement

Grass (Type-A)

Dataset	Image Type	$ \mathcal{L} $	Card	Dens	N	Ntrain	N _{test}	$w \times h$
Ankara	Hyperspectral/Aerial RGB	29	9.120	0.536	216	171	45	64×64
UC Merced Land Use	Aerial RGB	17	3.334	0.476	2100	1667	433	256×256
AID Multilabel	Aerial RGB	17	5.152	0.468	3000	2400	600	600×600
DFC-15 Multilabel	Aerial RGB	8	2.795	0.465	3341	2672	669	600×600
MLRSNet	Aerial RGB	60	5.770	0.144	109,151	87,325	21,826	256×256
BigEarthNet	Hyperspectral/Aerial RGB	19	2.900	0.263	590,326	472,245	118,081	256×256
BigEarthNet	Hyperspectral/Aerial RGB	43	2.965	0.247	590,326	472,245	118,081	256×256



bare-soil

buildings, cars,

grass, pavement

tanks, trees

buildings,

field, terrace,

impervious,

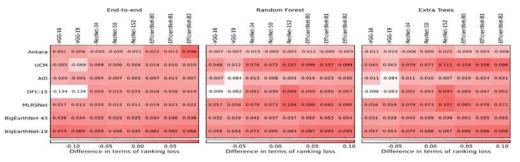
vegetation,

MLC BY FEATURE EXTRACTION W DNNs + PCTs vs. End-To-End DNNs

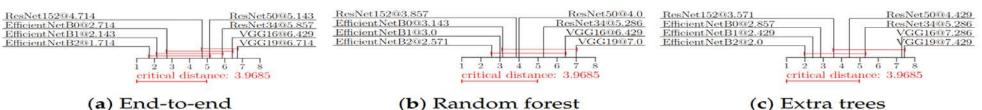
Conclusions of the experimental comparison

Fine-tuned weights clearly lead to better performance across the board

$$\mathbf{H} = egin{bmatrix} \mathbf{rl}_{11} & \mathbf{rl}_{12} & \cdots & \mathbf{rl}_{1n} \ \mathbf{rl}_{21} & \mathbf{rl}_{22} & \cdots & \mathbf{rl}_{2n} \ dots & dots & \ddots & dots \ \mathbf{rl}_{m1} & \mathbf{rl}_{m2} & \cdots & \mathbf{rl}_{mn} \end{bmatrix} \in \mathbb{R}^{m imes n}$$



The EfficientNet architecture clearly leads to best performance



Feature extraction + PCTs is comparable in performance to End-To-End

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

4706416

Semi-Supervised Multi-Label Classification of Land Use/Land Cover in Remote Sensing Images With Predictive Clustering Trees and Ensembles

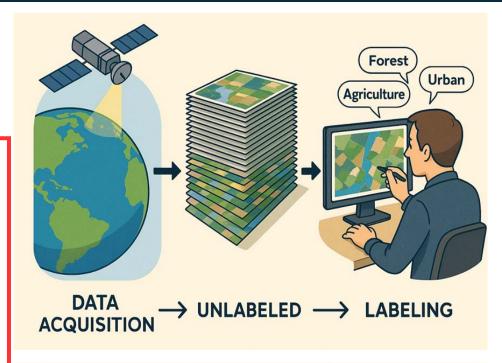
Marjan Stoimchev[®], Jurica Levatić[®], Dragi Kocev[®], and Sašo Džeroski[®]

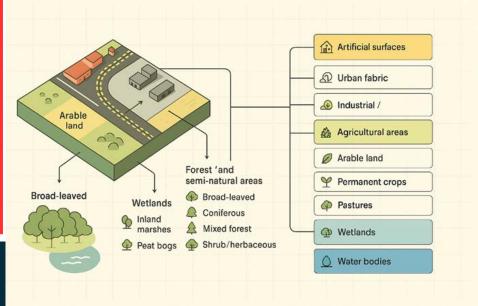
COMBINING DEEP NEURAL NETWORKS AND ENSEMBLES OF PREDICTIVE CLUSTERING TREES FOR SEMI-SUPERVISED LEARNING FROM RSI

MOTIVATION OF SSL FOR MLC OF RSIs

Current Limitations

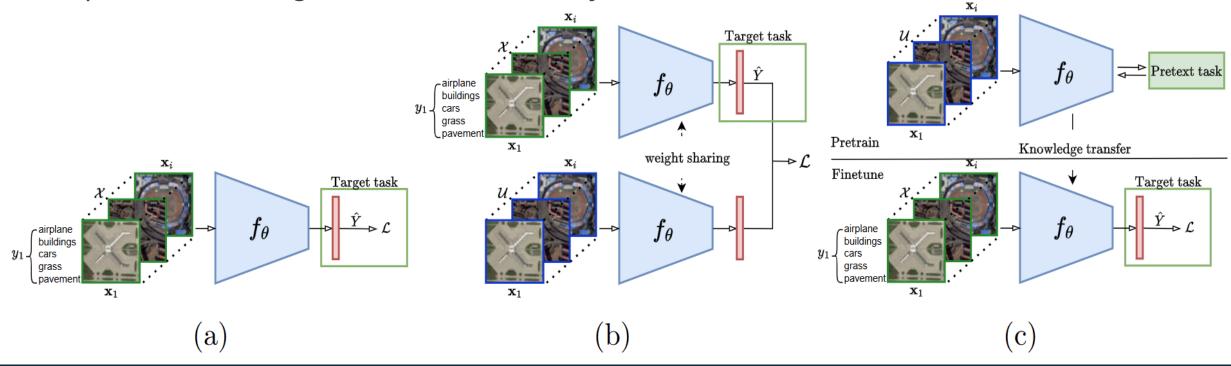
- Remote sensing images (RSIs) are largely unlabeled
- Manual annotations are very costly
- Especially when we have multi-label and hierarchical-multi-label classification
- Semi-supervised learning (SSL) has thrived in single-label classification as well as multi-label classification of tabular data
- Existing deep learning approaches for RSI don't really deal with MLC and especially HMLC
- In particular, they **rarely capture** dependencies within structured labels





DIFFERENT KINDS OF SUPERVISION IN LEARNING FROM RSIs

- a) (Fully) Supervised learning: All images are labeled
- b) Semi-supervised learning: Labeled and unlabeled images used simultaneously
- c) SSL via Self-SL: Unlabeled data used first for self-SL (unsupervised), supervised learning on labeled data then follows



THE BEST OF BOTH WORLDS: CONVOLUTIONAL DNNs & PCT ENSEMBLES

Step 1: Self-supervised pre-training: Image reconstruction

$$\mathcal{L}_{ ext{mse}}(heta,\phi;x) = ig\|x - D_{\phi}(E_{ heta}(x))ig\|^2$$

Step 2: Supervised fine-tuning

$$\mathcal{L}_{ ext{ce}} = -rac{1}{n} \sum_{i=1}^n y_i \log(\hat{y}_i)$$

$$\mathcal{L}_{ ext{bce}} = -rac{1}{n} \sum_{i=1}^n ig[\, y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i) \, ig]$$

Step 1: Feature extraction

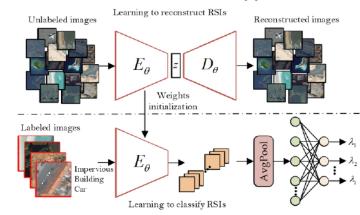
$$x \in \mathbb{R}^{w imes h imes 3}$$

$$\mathbf{f} = E(x;\theta) \in \mathbb{R}^d$$

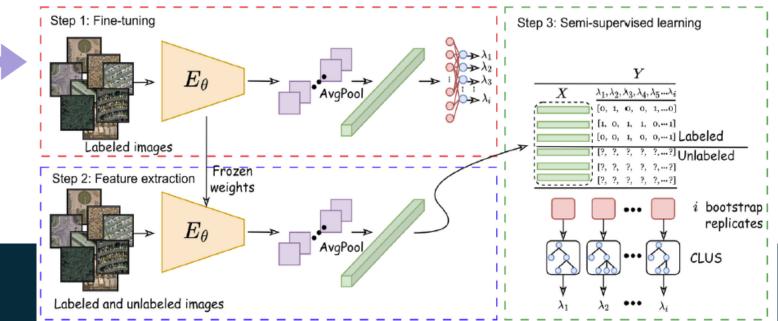
Step 2: Semi-Supervised PCTs and Ensembles

$$Var_f = w Var_f(Y) + (1-w) Var_f(X), \quad w \in [0,1]$$

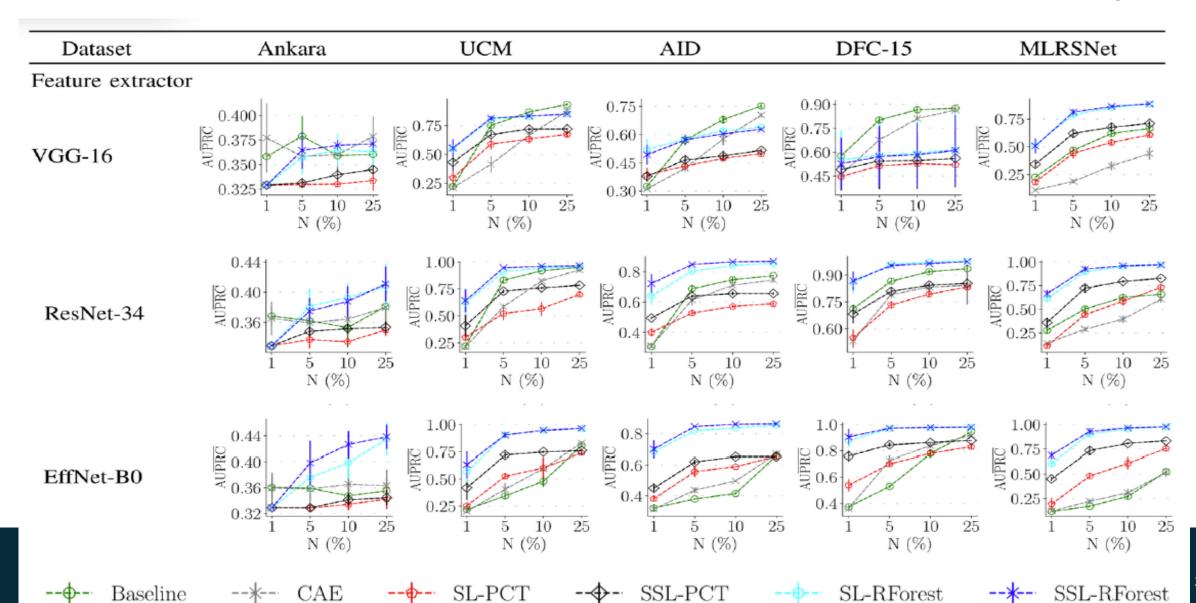
Convolutional Autoencoder approach



Semi-Supervised PCTs and Ensembles



SSL vs. SL PERFORMANCE: FEATURE EXTRACTION vs End-to-end L. (MLC)

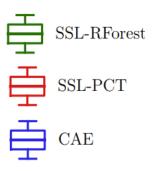


AGGREGATE RESULTS OF SL/SSL RANKS ACROSS 13 MLC METRICS

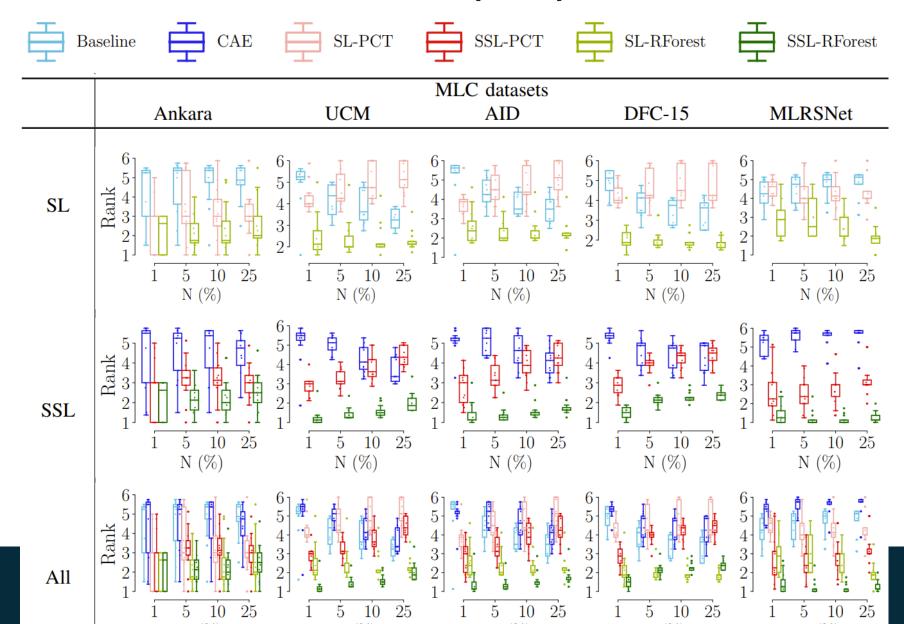
Baseline	CAE	SL-PCT	SSL-PCT	SL-RForest	SSL-RForest
VGG-16	VGG-16	VGG-16	VGG-16	VGG-16	VGG-16
VGG-19	VGG-19	VGG-19	VGG-19	VGG-19	VGG-19
ResNet34	ResNet34	ResNet34	ResNet34	ResNet34	ResNet34
ResNet50	ResNet50	ResNet50	ResNet50	ResNet50	ResNet50
ResNet152	ResNet152	ResNet152	ResNet152	ResNet152	ResNet152
EffNet-B0	EffNet-B0	EffNet-B0	EffNet-B0	EffNet-B0	EffNet-B0
EffNet-B1	EffNet-B1	EffNet-B1	EffNet-B1	EffNet-B1	EffNet-B1
EffNet-B2	EffNet-B2	EffNet-B2	EffNet-B2	EffNet-B2	EffNet-B2
		Ranking			
		•	,		
fferent metrics			: :		

FOR DIFFERENT DATASETS & DIFF. CNN ARCHITECTURES

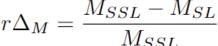
Repeated for different fractions of labeled data

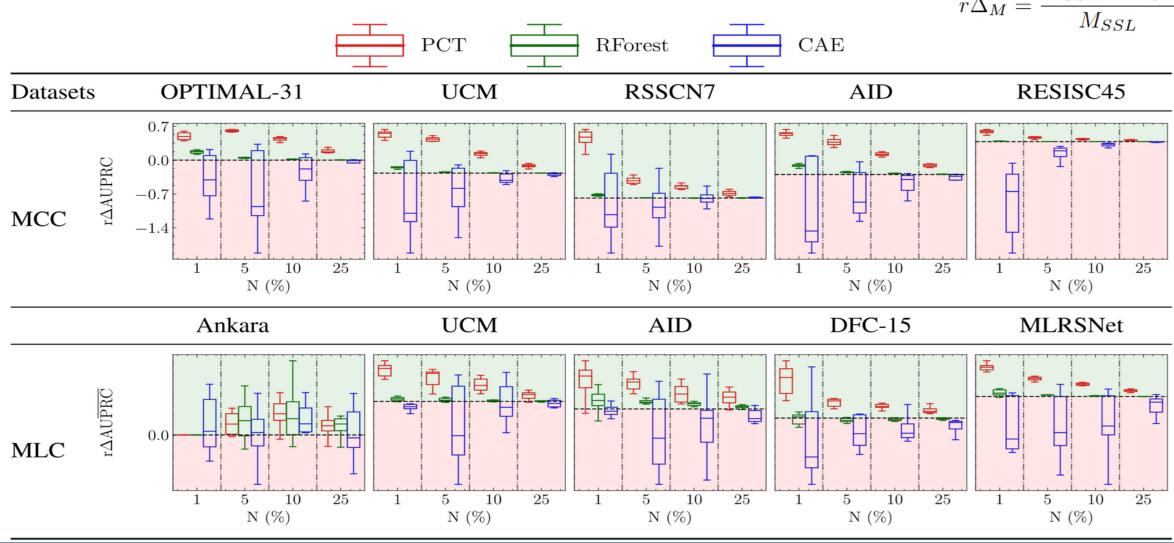


OVERALL RELATIVE PERFORMANCE (MLC)

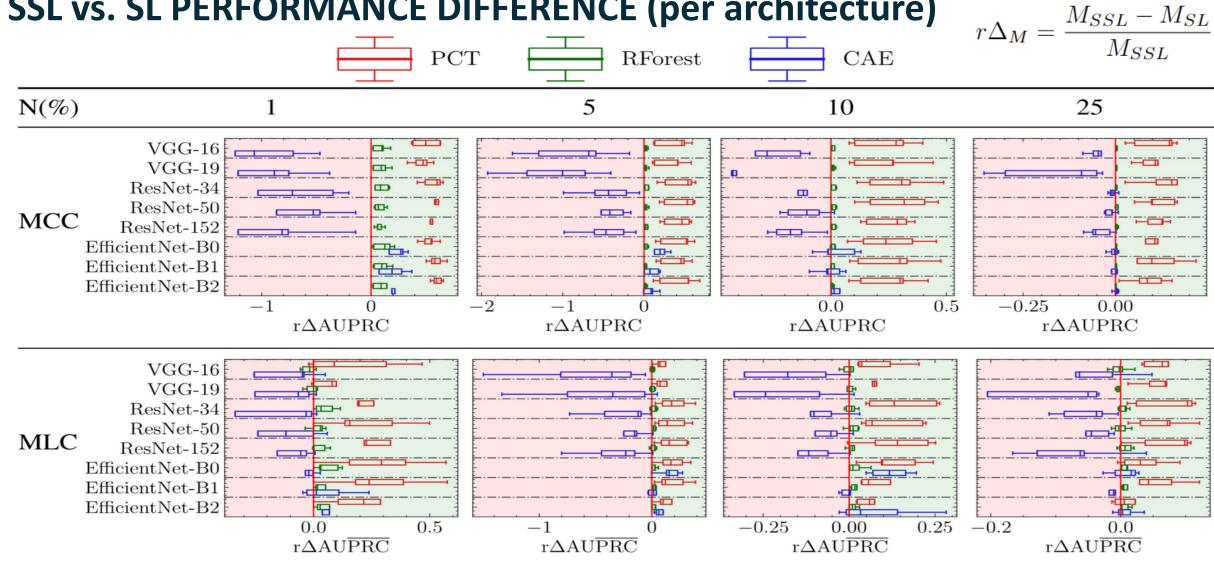


SSL vs. SL PERFORMANCE DIFFERENCE (per dataset)

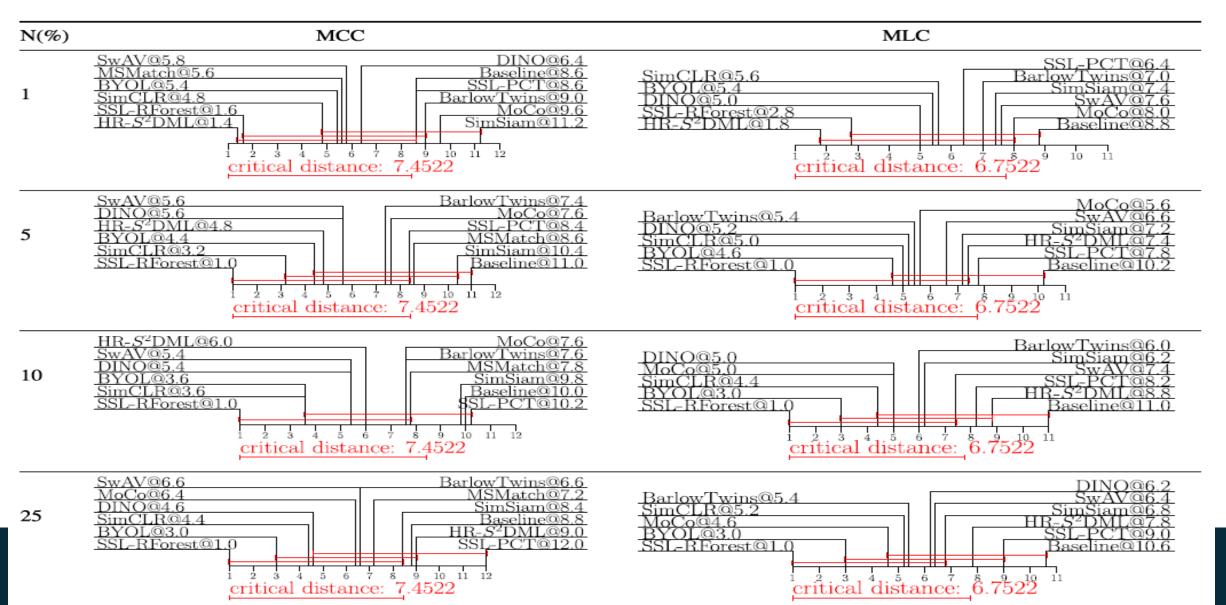




SSL vs. SL PERFORMANCE DIFFERENCE (per architecture)

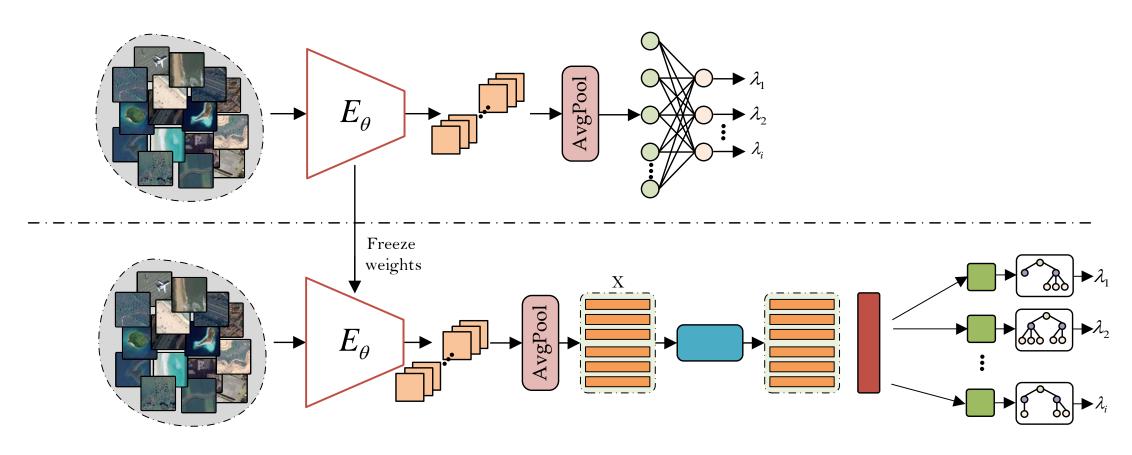


COMPARISON OF OUR SSL APPROACHES TO COMPETING ONES (MCC&MLC)



IMPROVING THE EFFICIENCY OF SSL WITH ENSEMBLES OF PREDICTIVE CLUSTERING TREES WHEN LEARNING FROM RSI

INSTEAD OF USING EXTRACTED FEATURES WITH PCTs FOR SSL, USE PCA FIRST AND REDUCE THE NUMBER OF FEATURES (FOR EFFICIENCY)



DIMENSIONALITY REDUCTION FOR EFFICIENT SSL FROM RSI

- Datasets (MCC)
 - OPTIMAL-31
 - UCM
 - RSSCN7
 - AID
 - RESISC45

Dataset splits:

- o 70% train, 10% validation, 20% test
- The splits are stratified
- Different percentages of (randomly sub-sampled) labeled data from the training sets, with the following amounts: 1%, 5%, 10%, and 25%

- For the feature extractors we use ResNet-152 and EfficientNet-B2
- Trained for 25 epochs
- Adam optimizer
- Batch size: 128
- Learning rate of 1e-4

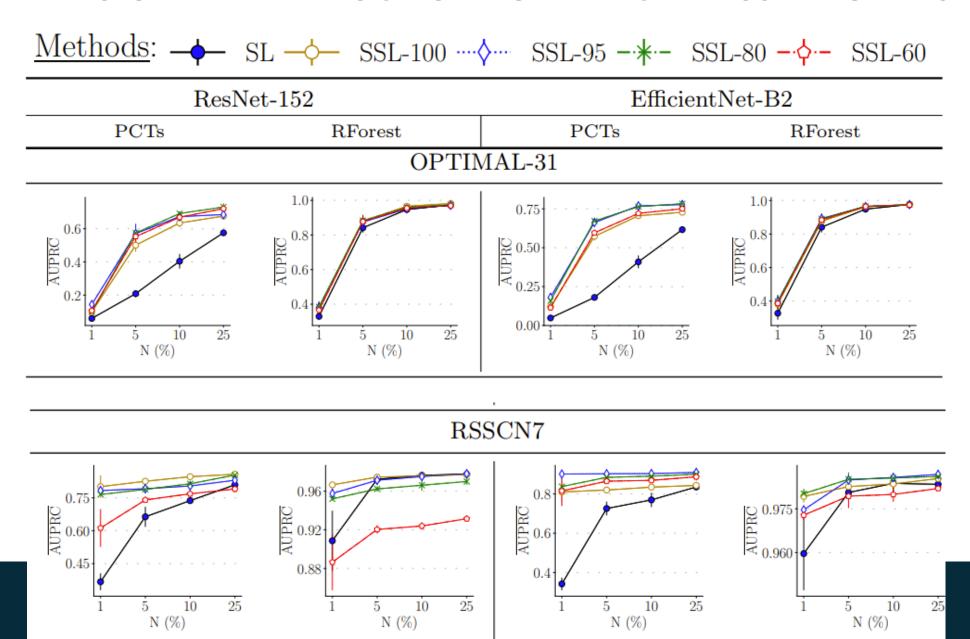
PCA

- We 60%, 80%, and 95% of the variance explained by the principal components
- Baseline: 100% explained variance (whole feature space)

SSL-PCTs and ensembles for MCC

- o M5 pruning
- 100 unpruned trees for supervised and semi-supervised tree ensembles
- We use 3-fold internal cross-validation on the training part of the dataset to optimize the w parameter

DIMENSIONALITY REDUCTION FOR EFFICIENT SSL FROM RSI



DIMENSIONALITY REDUCTION FOR EFFICIENT SSL FROM RSI

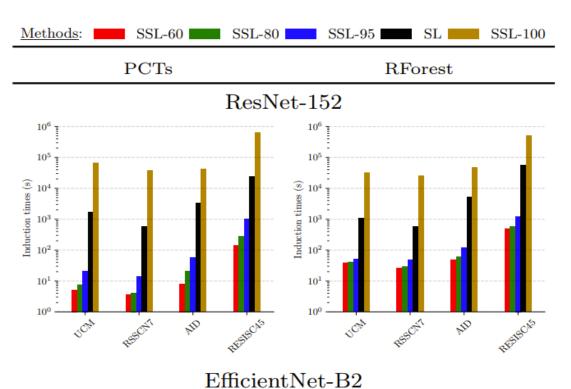


Table 1: The dimensions of the feature spaces before and after the application of PCA for each dataset and network architecture. EV is the cumulative explained variance in(%).

			F		
Dataset	Features extracted	Original	95	80	60
OPTIMAL-31 UCM RSSCN7 AID RESISC45	ResNet-152	2048 2048 2048 2048 2048	$ \begin{array}{r} 48 \\ 159 \\ 163 \\ 54 \\ 61 \end{array} $	21 19 12 20 26	12 12 5 12 15
OPTIMAL-31 UCM RSSCN7 AID RESISC45	EfficientNet-B2	1408 1408 1408 1408 1408	192 36 30 214 416	27 15 6 27 47	16 10 4 16 24

Induction times in seconds for SL and SSL algorithms for 25% labeled data and different levels of dimensionality reduction

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 18, 2025

SSL-MAE: Adaptive Semisupervised Learning Framework for Multilabel Classification of Remote Sensing Images Using Masked Autoencoders

Marjan Stoimchev , Jurica Levatić, Dragi Kocev, and Sašo Džeroski

ADAPTING THE LOSS FUNCTION WITHIN END-TO-END APPROACHES FOR SSL FROM RSI

ADAPT THE LOSS FUNCTION IN SS End-to-end LEARNING with MAEs

1. Image masking

$$x_p^l, x_p^u \in \mathbb{R}^{N_p imes (C imes P^2)}$$

2. Encoder

$$ilde{z} = E(x, heta): \mathbb{R}^{2N_p imes (C imes P^2)} \longrightarrow \mathbb{R}^{2N_p imes d}$$

3. Classification Head

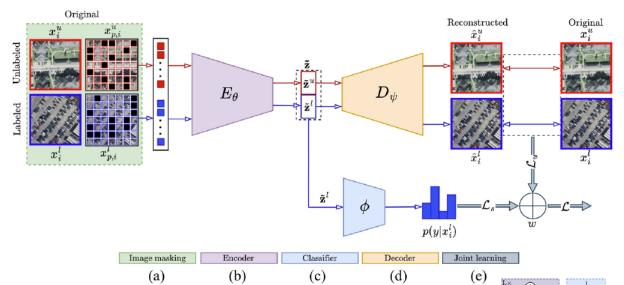
$$\mathbf{f}_v = rac{1}{N_p^l} \sum_{i=1}^{N_p^l} ilde{z}_v^{l(i)} \in \mathbb{R}^d$$

$$\mathcal{L}_s = rac{1}{B_l} \sum_{i=1}^{B_l} \mathcal{H}\left(y_i, p(y \mid x_i^l)
ight)$$

4. Decoder

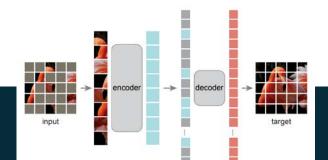
$$\hat{x} = D(ilde{z}, \psi) \in \mathbb{R}^{C imes W imes H}$$

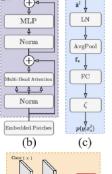
$$\mathcal{L}_u = rac{1}{B} \sum_{i=1}^B \left(rac{1}{\Omega(x_i^M)} \sum_{m \in M_i} \|\hat{x}_{i,m} - x_{i,m}\|_1
ight)$$



5. Adaptive Joint Learning

$$\mathcal{L} = w \mathcal{L}_s + (1-w) \mathcal{L}_u$$





EXPERIMENTAL COMPARISON: DESIGN

Experimental Setup

- Inductive learning setting
- Different percentages of (randomly subsampled) labeled data fractions: (1%, 5%, 10%, and 25%)
- Five repetitions (seeds)
- Learning curves

Optimization of w:

- Grid search (GS)
- Learnable weight:

$$\mathcal{L}(heta, heta) = \sigma(heta)\mathcal{L}_s(heta) + (1-\sigma(heta))\mathcal{L}_u(heta)$$

$$heta \leftarrow heta - \eta rac{\partial \mathcal{L}}{\partial heta}, \quad heta \leftarrow heta - \eta rac{\partial \mathcal{L}}{\partial heta}$$

$$rac{\partial \mathcal{L}}{\partial heta} = \sigma(heta)(1-\sigma(heta))[\mathcal{L}_s(heta)-\mathcal{L}_u(heta)]$$

Supervised Baseline method:

$$\mathcal{L} = w \mathcal{L}_s + (1 - w) \mathcal{L}_u$$

Datasets

MCC datasets:

• OPTIMAL-31, UCM, AID, RSSCN7, RESISC45

MLC datasets:

• UCM, AID, DFC-15, MLRSNet, BigEarthNet-43

Comparison against state-of-the-art methods

SSL methods:

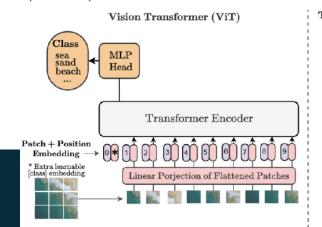
 SoftMatch, FixMatch, FreeMatch, SimMatch, FlexMatch, CoMatch

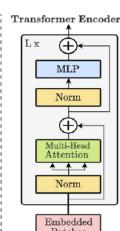
Self-SL methods:

SimMIM, SimCLR, DINO, VICReg, MoCo, BYOL, Tri-ReD

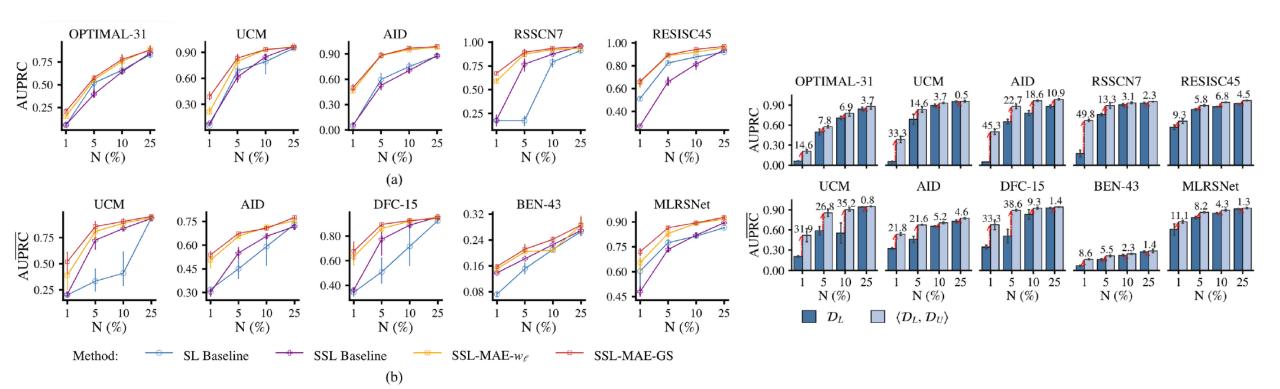
Classification tasks

- Multi-Class Classification (MCC)
- Multi-Label Classification (MLC)





EXPERIMENTAL COMPARISON: RESULTS



Performance of SL & SSL methods on MCC (top) and MLC (bottom) dataset

AUPRC and AU average PRC as metrics for MCC and MLC

Absolute performance (left) and performance improvement for SSL vs SL for MAE-GS

Comparison to competing SSL and SelfSL approaches

MCC Datasets	(OPTIM N (UCM N (%)				ID (%)		RSSCN7 N (%)		RESISC45 N (%)				Avg. ranks N (%)			J				
Methods	1	5	10	25	1	5	10	25	1	5	10	25	1	5	10	25	1	5	10	25	1	5	10	25
SL Baseline SoftMatch FixMatch FreeMatch SimMatch FlexMatch CoMatch	0.092 0.097 0.099 0.093 0.102	0.274 0.331 0.251 0.417 0.339	0.610 0.419 0.628 0.372 0.630 0.419 0.739	0.512 0.846 0.529 0.636 0.498	0.142 0.166 0.207 0.228	0.549 0.620 0.535 0.664 0.572	0.793 0.806 0.851 0.755 0.871 0.812 <u>0.904</u>	0.944 0.955 0.946 0.954 0.955	0.091 0.081 0.105 0.125 0.122	0.814 0.309 0.347 0.307 0.503 0.392 0.639	0.625 0.678 0.630 0.787 0.652	0.720 0.916 0.844 0.921 0.816	0.340 0.356 0.346 0.359 0.395	0.699 0.717 0.748 0.746 0.747	0.881 0.848 0.874 0.833 0.879 0.859 0.888	0.920 0.942 0.909 0.932 0.932	0.217 0.300 0.212 0.492 0.192	0.892 0.514 0.821 0.522 0.767 0.514 0.885	0.632 0.895 0.634 0.907 0.629	0.868 0.948 0.842 0.551 0.853	7.2 6.6 6.2 5.0 4.8	8.1 6.4 7.4 5.2 6.3	5.1 3 7.7 7 5.6 4 8.2 7 4.6 6 7.1 6 3.4 4	7.6 4.7 7.4 6.3 6.8
~			$\frac{0.757}{0.778}$		0.212 0.386					$\frac{0.881}{0.882}$					$\frac{0.922}{0.936}$	0.937 0.955				0.958 0.969	2.6 1.2		$\frac{2.1}{1.2}$ $\frac{2}{2}$	
MCC Datasets			MAL-3 (%)	1			CM (%)				ID (%)				CN7 (%)				SC45 (%)		A	Avg. 1	ranks %)	
Methods	1	5	10	25	1	5	10	25	1	5	10	25	1	5	10	25	1	5	10	25	1	5	10	25
SL Baseline SimMIM SimCLR DINO VICReg MoCo BYOL Tri-ReD	0.061 0.063 0.068 0.056 0.049 0.061	0.397 0.060 0.073 0.060 0.055 0.071	0.642 0.806 0.798 0.799 <u>0.840</u> 0.853	0.889 0.847 0.893 0.911 0.895 <u>0.928</u> 0.929	0.078 0.066 0.084 0.078 0.061	0.616 0.075 0.070 0.072 0.063 0.069	0.849 0.936 0.062 0.918 <u>0.944</u> 0.952	0.966 0.967 0.976 0.687 0.971 <u>0.985</u> 0.987	0.056 0.063 0.055 0.064 0.056 0.056	0.814 0.527 0.800 0.745 0.710 0.847 0.829 0.817	0.703 0.897 0.870 0.822 0.919 0.915	0.880 0.943 0.926 0.918 0.965 0.954	0.175 0.179 0.231 0.210 0.171 0.166 0.231 0.693	$\begin{array}{c} 0.769 \\ 0.882 \\ 0.898 \\ 0.878 \\ \underline{0.911} \\ 0.905 \end{array}$	0.876 0.939 0.929 0.924 0.939 0.957	0.960 0.961 <u>0.969</u> 0.958 <u>0.969</u> 0.974	0.272 0.781 0.792 0.773 0.860 0.828	0.659 0.918 0.922 0.920	0.948 0.946 0.947 0.961 0.961	0.938 0.968 0.968 0.971 <u>0.974</u> 0.975	10.0 10.0 9.8 4.4 5.7 6.4 5.2 3.2	9.9 8.8 4.8 6.3 4.7 <u>4.1</u>	6.0 9.0 7.4 6.2 5.6 2.2 1.7 8.3	8.4 6.2 5.6 5.7 2.4 1.9
				0.889 0.879				0.965 0.960		$\frac{0.881}{0.882}$			0.590 0.673				0.656 0.661						5.7 4.4	
MLC Datasets			CM (%)				ID (%)				C-15 (%)				N-43 (%)				SNet (%)		A	Avg. 1 N (ranks %)	
Methods	1	5	10	25	1	5	10	25	1	5	10	25	1	5	10	25	1	5	10	25	1	5	10	25
SL Baseline SimMIM SimCLR DINO VICReg MoCo BYOL Tri-ReD	0.208 0.220 0.258 0.228 0.256 0.222	0.726 0.231 0.233 0.221 0.261 0.239	0.838 0.926 0.665 0.898 <u>0.926</u> 0.927	$\frac{0.959}{0.948}$ 0.955	0.303 0.330 0.307 0.303 0.304 0.319	0.550 0.680 0.666 0.635 0.701 0.692	0.657 0.719 0.738 0.704 0.757 0.751	0.747 0.717 0.767 0.774 0.758 <u>0.786</u> 0.787 0.757	0.362 0.376 0.385 0.401 0.382 0.391	0.760 0.773 0.887 0.880 0.878 0.883 0.898 0.789	0.889 0.924 0.923 0.923 0.931 0.930	0.954 0.958 0.955 <u>0.957</u> 0.955 0.958	0.138 0.078 0.081	0.182 0.208 <u>0.212</u> 0.206 0.209 0.224	0.238 0.241 0.241 0.251	0.270 0.297 0.298 <u>0.303</u> 0.294 0.317	0.479 0.775 0.733 <u>0.757</u> 0.746	0.894 0.892 0.887 0.898 0.878	0.820 0.920 0.914 0.918 0.921 0.906	0.895 0.941 0.942 <u>0.944</u> 0.946 0.942	7.8 7.3 4.6 4.4 4.9 5.6 5.6 3.0	7.2 4.2 4.4 6.4 3.0 3.0	6.6 6.0 2.9 5.3 7.0 2.0 2.2 3.6	8.2 4.1 3.4 3.8 3.1 1.6
SSL-MAE- w_ℓ SSL-MAE-GS				0.941 0.953									$\frac{0.150}{0.158}$				0.655 0.720						6.8 ⁴ .4 :	

Fully- and Semi-Supervised Hierarchical Multi-Label Image Classification with Graph Learning

Marjan Stoimchev, Boshko Koloski, Jurica Levatić, Dragi Kocev, and Sašo Džeroski

HMLC OF RSI BY COMBINING VISION TRANSFORMERS AND GRAPH NEURAL NETWORKS

INITIAL APPROACH: HIERARCHICAL MULTI-LABEL CLASSIFICATION OF RSI BY ADAPTING THE LOSS FUNCTION IN End-to-end LEARNING

The classifier head contains number of neurons equal to the number of leaves plus the intermediate nodes in the hierarchy

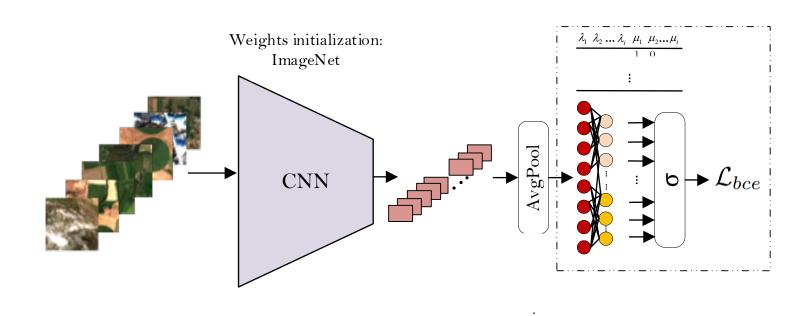


$$w_0 \in (0,1]$$

 $w(node) = w_0 w(node \cdot parent)$
 $w_0 = 1: MLC$

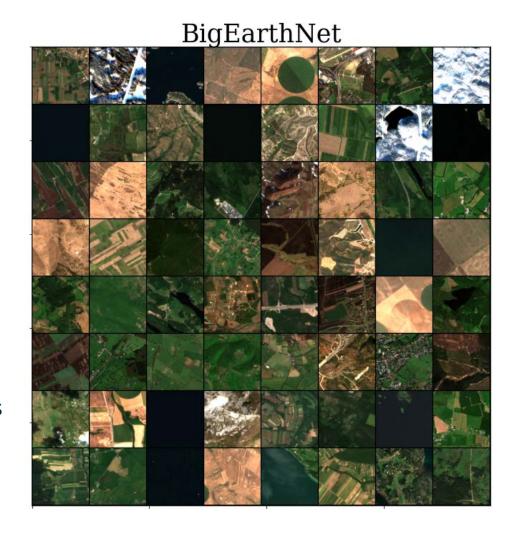
$$\mathcal{L}_{bce} = -\frac{1}{N} \sum_{i=1}^{N} [y_i log(\hat{y}_i) + (1 - y_i) log(1 - \hat{y}_i)]$$

$$\mathcal{L}_{wbce} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{c} w_j \cdot [y_i log(\hat{y}_i) + (1 - y_i) log(1 - \hat{y}_i)]$$



HMLC of RSIs: The BigEarthNet dataset

- BigEarthNet
 - -590,326 non-overlapping image patches
- We used two Corine Land Cover (CLC) nomenclatures for the hierarchy:
 - Original CLC with 43 labels -> all hierarchical labels: 63
 - Reduced CLC with 19 labels -> all hierarchical labels: 27
- We subsample around 1% of the dataset to provide the initial results



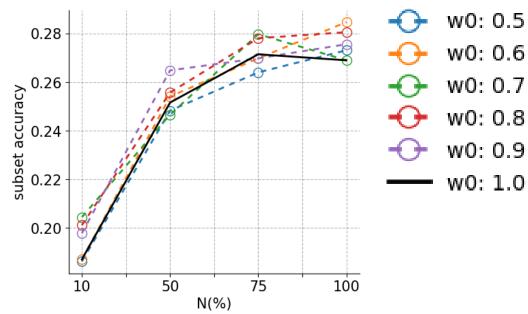
HMLC of RSIs: The BigEarthNet dataset, Initial experiments

Dataset splits:

- o 70% train, 10% validation, 20% test
- The splits are stratified

Training details:

- For the feature extractors we use ConvNext-V2
- Trained for 50 epochs
- Adam optimizer
- o Batch size: 128
- Learning rate of 1e-4
- The weight parameter for producing the weights in the hierarchy is set to: 0.6, 0.7, 0.8, 0.9 and 1



Fully- and Semi-Supervised Hierarchical Multi-Label Image Classification with Graph Learning

Motivation

Current Limitations:

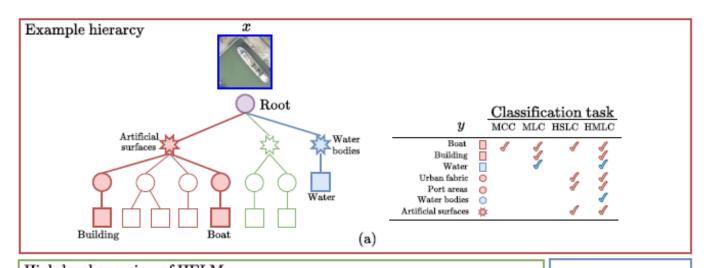
- Single-path assumption in hierarchies
- Underutilization of hierarchical structure
- Supervised-only approaches
- Scarcity of HMLC image datasets

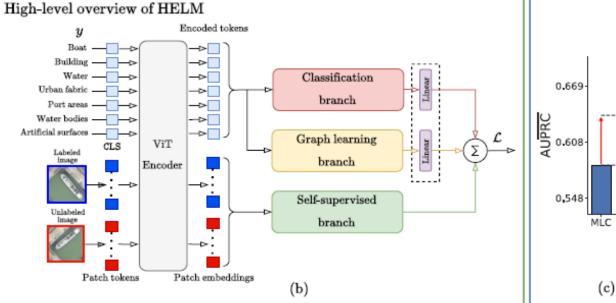
Annotation Challenge:

- Hierarchical labeling is expensive and time-consuming
- Expert knowledge required for complex taxonomies
- Limited labeled data vs. abundant unlabeled data

Our Contributions - HELM Framework:

- Hierarchy-specific class tokens for label interactions
- Graph Convolutional Networks for hierarchical structure encoding
- Semi-supervised framework leveraging unlabeled data
- New HMLC benchmark datasets from remote sensing





+9,3%

HELM Methodology

Hierarchy-Specifiic Class Tokens

- ullet Extend Vision Transformer (VIT) with ${m M}$ hierarchy-specific CLS tokens
- $M=M_l+M_h$ (leaf labels + intermediate hierarchy nodes)
- Input sequence: $T = [T_{\mathtt{CLS}} \| T_p] \in \mathbb{R}^{(M+N_p) imes d}$

$$ilde{\mathbf{z}} = E(T, heta) \in \mathbb{R}^{(M+N_p) imes d}$$

where $E(\cdot, \theta)$ is the ViT encoder with parameters θ

Hierarchical Structure Encoding

Construct directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ from label hierarchy:

$$ilde{\mathbf{z}}_g = \phi(ilde{\mathbf{z}}_{ exttt{CLS}}; \mathcal{G}) \in \mathbb{R}^{M imes d}$$

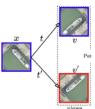
$$\mathbf{f}_g = rac{1}{M} \sum_{m=1}^{M} ilde{\mathbf{z}}_g^{(m)}$$

Classification loss (operates only on labels samples):

$$\mathcal{L}_g = rac{1}{B_l} \sum_{i=1}^{B_l} \mathcal{H}(y_i, p_g(y|x_i))$$

Bootstrap Your Own Latent (BYOL)

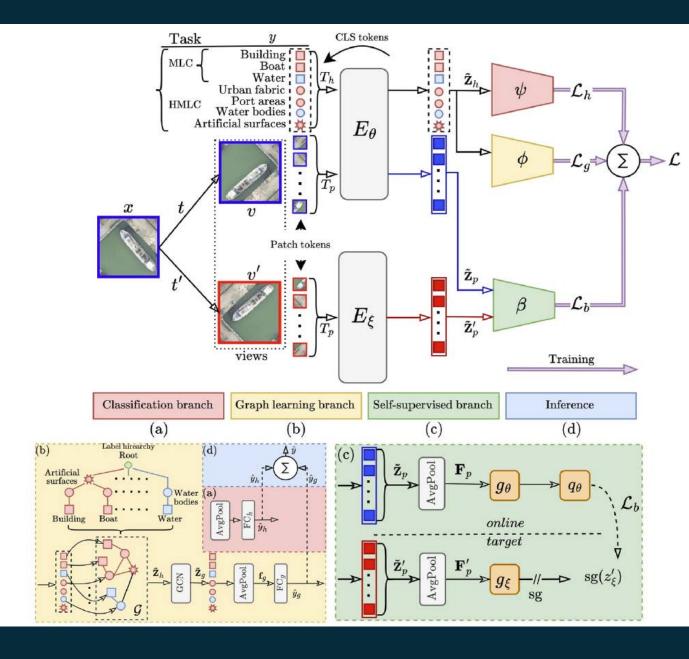
Augmentation views:



$$\mathcal{L}_b = 2 - 2 \cdot rac{\langle q_{ heta}(g_{ heta}(\mathbf{F}_p)), g_{\xi}(\mathbf{F}_p')
angle}{\|q_{ heta}(g_{ heta}(\mathbf{F}_p))\| \cdot \|g_{\xi}(\mathbf{F}_p')\|}$$

Target network update: $\xi \leftarrow \tau \xi + (1 - \tau)\theta$

Momentum coefficient: $au \in [0,1)$



HELM Evaluation: Experimental Design

Evaluations:

- Supervised
- Semi-supervised: Labeled data proportions {1%, 5%, 10%, 25%} inductive learning setting
- Repeat the experiments three times

\mathcal{L}_{s}	\mathcal{L}_{g}	\mathcal{L}_b	Setting
✓			Supervised
\checkmark			Supervised
\checkmark	\checkmark		Supervised/SSL
\checkmark		\checkmark	Supervised/SSL
\checkmark	\checkmark	\checkmark	Supervised/SSL
	\mathcal{L}_s \checkmark \checkmark \checkmark \checkmark	\mathcal{L}_s \mathcal{L}_g \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark	\mathcal{L}_s \mathcal{L}_g \mathcal{L}_b \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark

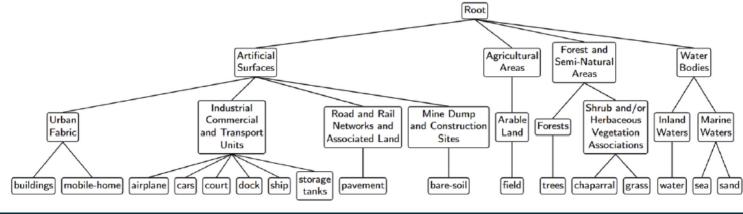
State-of-the-Art Comparison:

- 1. Coherent Hierarchical Multi-Label Classification Networks
- 2.HiMulConE
- 3.HMI

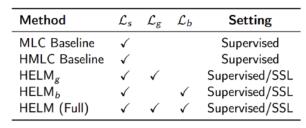
Datasets

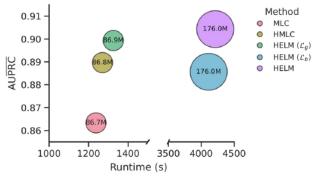
	N N _{train} N _{test}						1	c _l			
Dataset				1	2	3	4	5	6	ť	h
UCM	2,100 3,000 3,341 109,151	1,667	433	4	9	17	-	-	-	17	30
AID	3,000	2,400	600	4	9	17	-	-	-	17	30
DFC-15	3,341	2,672	669	3	7	7	-	-	-	8	17
MLRSNet	109,151	87,336	21,815	7	15	22	60	-	-	60	104

Hierarchies



HELM Evaluation: SL Results



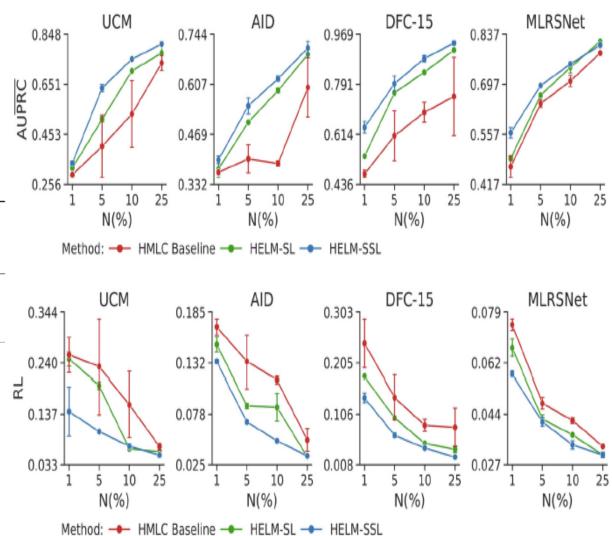


Method	Remote Sensing Datasets									
Motiliou	UCM	AID	DFC-15	MLRSNet	Rank					
		AUPRO	፫ (↑)							
MLC	0.863	0.767	0.967	0.838	5.00					
HMLC	0.890	0.827	0.971	0.863	3.00					
HELM	0.899 (+4.2, +1.0)	0.842 (+9.8, +1.8)	0.979 (+1.2, +0.8)	0.869 (+3.7, +0.7)	2.50					
HELM,	0.885 (+2.5, -0.6)	0.852 (+11.1, +3.0)	0.969 (+0.2, -0.2)	0.873 (+4.2, +1.2)	3.13					
HELM	0.904 (+4.8, +1.6)	0.849 (+10.7, +2.7)	0.977 (+1.0, +0.6)	0.871 (+3.9, +0.9)	1.38					
		Ranking L	.oss (↓)							
MLC	0.031	0.025	0.010	0.039	4.75					
HMLC	0.031	0.021	0.008	0.027	2.88					
HELM	0.024 (+22.6, +22.6)	0.019 (+24.0, +9.5)	0.007 (+30.0, +12.5)	0.025 (+35.9, +7.4)	2.31					
HELM,	0.029 (+6.5, +6.5)	0.019 (+24.0, +9.5)	0.012 (-20.0, -50.0)	0.025 (+35.9, +7.4)	3.75					
HELM	0.022 (+29.0, +29.0)	0.017 (+32.0, +19.0)	0.006 (+40.0, +25.0)	0.024 (+38.5, +11.1)	1.31					

HELM Evaluation: SSL Results

				Remote Sens	ing Data	sets						
		Α	UPRC (†)		Ranking Loss (↓)							
Method	UCM	AID	DFC-15	MLRSNet	UCM	AID	DFC-15	MLRSNet				
C-HMCNN [36]	0.834	0.764	0.962	0.792	0.038	0.024	0.012	0.041				
HiMulConE [15]	0.843	0.770	0.970	0.865	0.031	0.020	0.006	0.035				
HMI [76]	0.661	$\overline{0.647}$	0.923	$\overline{0.437}$	$\overline{0.080}$	$\overline{0.073}$	0.043	$\overline{0.138}$				
HELM (Ours)	0.904	0.849	0.977	0.871	0.022	0.017	0.006	0.025				

Remote Sensing Datasets



MANY THANKS!

TO YOU, FOR YOUR ATTENTION.
TO PARTNERS IN COLLABORATIVE PROJECTS.
TO COLLEAGUES@JSI, FOR THEIR COLLABORATION