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Background

Earth science requires navigation in complex information spaces.
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Connecting Data for the Earth Science Domain

Task: Given a text, extract the top n keywords associated with a score.

▪ TaxoTagger. A tool that matches texts to keywords of a given taxonomy.

▪ Taxonomy. NASA GCMD taxonomy for Earth Observation and Earth Science.

▪ Scoring. Based on the semantic similarity of a text and keyword’s description within the 

taxonomy
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Earth Observation Knowledge Graph Applications

8
Tobias Hecking, DLR - DARES 2025, Bologna, Italy

Integrated search of the web and EO datasets Visual data exploration
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Retrieval Augmented Generation

LLMs are transforming how we access information

Even in scientific search, traditional query search is being replaced by

conversational interfaces and AI chatbots.

However, they can ”hallucinate”, creating eloquent but incorrect answers

▪ Recency. Lack of access to recent publications or datasets

▪ Domain. Lack of domain specific access

▪ Citation. Lack of ability to cite their resources

→ Could lead researchers to lose their trust in LLM-based answers.

Retrieval-Augmented Generation (RAG) can tackle those issues

It grounds LLM responses in retrieved, verifiable sources resulting in

✓ Higher precision in answers

✓ Without losing the eloquence of an answer
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Retrieval Augmented Generation

RAG implementations has infinite possibilities depending on several attributes

• Data Genre. Web Data in the wild, filtered web data , scientific publications, scientific datasets, …

• Data Structure. Unstructured, Knowledge Graph, set of PDFs, …

• Retrieval. Keyword-based, semantic-based retrieval, …

• Ranking, Data Ingestion, and Context Structuring.

External 

Data

CONTEXT

Answer
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Retrieval Augmented Generation

Our Focus

• Data Genre. Employing multi-genre data →

• Scientific Publications. Captures grounded context and trusted scientific interpretation

• Scientific Datasets. Captures empirical grounding

• Curated Web data. Captures latest development and easy-to-understand literature/information

• Data Structure.

• Knowledge Graph. To exploit semantic connections between data points and boost explorative
search – the core of scientific research

• Indexed Web-Data. To exploit higher recall of information

• Retrieval. Keyword or semantic-based retrieval > A fusion of both.

RAG implementations has infinite possibilities depending on several attributes

• Data Genre. Web Data in the wild, filtered web data , scientific publications, scientific datasets, …

• Data Structure. Unstructured, Knowledge Graph, set of PDFs, …

• Retrieval. Keyword-based, semantic-based retrieval, …

• Ranking, Data Ingestion, and Context Structuring.
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Data for the Earth Science Domain
Knowledge Graph Statistics

Data Selection for The Earth Science Domain

▪ OpenAlex (~2 Million) 

▪ Open index of scholarly works across scientific domains.

▪ Retrieved via API by filtering for Earth Science–related topics.

▪ PANGAEA (885 Datasets). 

▪ Crawled from the PANGAEA Earth science data repository.

▪ Contains curated observational and experimental datasets.

▪ STAC Datasets (65 Datasets). 

▪ Acquired via the Spatio-Temporal Asset Catalog (STAC) API.

▪ Data sourced from the EOC Geoservice portal (DLR).

Tobias Hecking, DLR - DARES 2025, Bologna, Italy
14



Approach
A Two-Component Approach

A. Data Pipelines – Offline Mode
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Evaluation Approach

- Evaluation Setup.
- Data pipeline. Knowledge Graph vs. Zero-Shot

- LLM Model Size. Small open-weight LLMs vs. Big open-weight LLMs.

- LLM-Generated Questions. 70 questions that leverage Earth Observation Taxonomy.

- Phase I: Automatic Evaluation
- LLM-as-a-Judge. Score several criteria of a response using LLM in a zero-shot manner.

- {OUTLOOK} Phase II: Human Evaluation
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Evaluation
Preliminary LLM-as-a-judge Evaluation using the Knowledge Graph

Table 2. Mean scores for each experiment for two-step generation RAG (2rag), one-step generation RAG (rag) and 

Zero-Shot generation (0shot). * denotes approaches that achieve significantly higher scores than the 0shot baseline, 

while † indicates scores that are significantly higher than those obtained with rag.

Heatmap for each criterion (Overall, Groundedness, Helpfulness, and Depth). 

The y-axis represents each assessed criterion, and the x-axis represents each 

effect-pair (m1 vs m2). Each cube represents the effect size 𝑟.
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One-step RAG is rated worse

than zero-shot on big LLM
[helpfulness, depth] (no 

difference for the small LLM.)
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than zero-shot on big LLM
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than zero-shot/rag on big and 
small LLMs [helpfulness, 

depth, Groundedness]
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Thank you!
Questions?

Earth Observation –

RAG-Based Demo
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