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Introduction

Domain Adaptation

Figure 2: Domain Adaptation

• Source: Labeled satellite images from dry-season( with classes
farmland, forest, industrial, parking, residential, river).

• Target: Unlabeled another satellite images during monsoon.
• Aim is to predict the label of the target image.
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Introduction

Types of domain adaptation

Table 1: Types of domain adaptation

Types of adaptation Source Target
Supervised domain adaptation [1] Labelled mostly labelled
Semi-Supervised domain adaptation [2] Labelled mostly unlabelled
Unsupervised domain adaptation [3] Labelled fully unlabelled
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Introduction

Unsupervised Domain adaptation (UDA)

• Let X be the input space and Y = {1, . . . ,C} the label space.
Source has labels, target is unlabeled:

Ds = {(xs
i , ys

i )}
ns
i=1 ∼ Ps(x, y), Dt = {xt

j}
nt
j=1 ∼ Pt(x).

• We learn h = fϕ ◦ gθ : X → ∆C−1 (feature extractor gθ and classifier
fϕ) with loss ℓ (e.g., cross-entropy).

• Source and target loss

Rs(h) = E(x,y)∼Ps[ℓ(h(x), y)], Rt(h) = E(x,y)∼Pt[ℓ(h(x), y)].

• Goal: minimize Rt(h) using Ds and Dt.
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Introduction

Pseudo-Labeling for UDA

Pseudo-Label
• A pseudo-label is a label we assign to an unlabeled sample using a

model, so we can train with a supervised loss on that sample.

Figure 3: Illustration of Pseudo-labeling
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Introduction

Why contrastive learning

• Contrastive learning (CL) learns features that are both
domain-invariant and class-discriminative from largely unlabeled data.

• This is essential for multi-source UDA
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Introduction Introduction

Multi-source UDA

• Real targets differ in many ways (sensor, season, resolution,
geography).

• Data come from multiple heterogeneous sources makes the real
deployment of domain adaptation.

• Both source and target share same set of labels.
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Introduction Introduction

Why density based clustering

• The effectiveness of UDA depends on the quality of pseudo-labels
assigned to target data.

• To obtain reliable pseudo-labels, clustering algorithms groups the
similar target features and use the assignments

• Density-based clustering discovers arbitrarily shaped clusters and
marks low-density points as noise.

• Incremental density-based clustering [4] is an enhanced approach that
updates the clustering results incrementally as new data points arrive.

• It enables efficient updates to cluster structures without requiring a
complete re-clustering process.
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Literature Survey

Literature Survey

Table 2: Representative multi-source unsupervised domain adaptation (MS-UDA)
methods.

Method Year Source → Target
dataset

Feature Extractor Main Contribution Limitation

M3SDA [5] 2019 DomainNet / Office-
Home

ResNet-50 Aligns higher-order moments across
multiple sources and target; introduced
the large-scale DomainNet benchmark
for MS-UDA.

Global (class-agnostic) alignment can un-
derperform on fine-grained classes; requires
source data; sensitive to class imbalance and
negative transfer.

MFSAN [6] 2019 Office-31 /
ImageCLEF-DA
/ Digit-Five

ResNet-50 / CNN Two-stage scheme: (i) domain-specific
distribution alignment per source–
target pair and (ii) classifier alignment
with domain-specific heads.

Many source-specific branches/head
losses increase complexity; fusion thresh-
olds/hyperparameters sensitive; assumes
closed-set label space.

LtC-MSDA [7] 2020 DomainNet / Office-
Home / Office-31

ResNet-50 Builds a prototype graph across
sources; Relation Alignment Loss en-
forces cross-domain relational consis-
tency for knowledge aggregation.

Prototype purity and memory bank
maintenance are non-trivial; tuning of
graph/temperature terms; limited open-
/universal-set handling.
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Literature Survey

Table 2: Representative multi-source unsupervised domain adaptation (MS-UDA)
methods.

Method Year Source → Target
dataset

Feature Extractor Main Contribution Limitation

T-SVDNet [8] 2021 Office-Home / Do-
mainNet

ResNet-50 Exploits high-order prototypical
correlations; imposes tensor low-
rank (T-SVD/TLR) constraints plus
uncertainty-aware source weighting.

Tensor ops add compute/memory;
rank/weighting hyperparameters sensi-
tive; assumes clusterable class structure;
requires source data at adapt time.

PTMDA [9] 2022 Office-Home / Do-
mainNet (typ.)

ResNet-50 Builds pseudo target domains via
group-specific adversarial subspaces
with metric constraints; adds matching
normalization to stabilize alignment.

Adversarial + metric objectives increase
training cost; subspace design may be
dataset-specific; relies on pseudo-label qual-
ity.

MCC-DA [10] 2023 Digit-Five / Office-
31 / DomainNet

ResNet-50 Decentralized MS-UDA: collaborative
contrastive alignment among per-
domain models without sharing raw
data; periodic model aggregation.

Requires model exchange/synchronization;
robustness depends on contrastive partner
selection; more training rounds than central-
ized baselines.
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Literature Survey

Table 2: Representative multi-source unsupervised domain adaptation (MS-UDA)
methods.

Method Year Source → Target
dataset

Feature Extractor Main Contribution Limitation

RRL [11] 2023 DomainNet / Office-
Home / Digits

ResNet-50 Riemannian representation learning:
minimizes average empirical Hellinger
distance with theoretical bounds on
MS-UDA risk.

Computing Riemannian distances adds over-
head; metric choices affect stability; closed-
set assumption; needs access to sources.

SUMDA [12] 2024 DomainNet / Office-
Home (reported)

ResNet-50 (typ.) Cross-source alignment strategy that
leverages inter-source complementar-
ities (e.g., uncertainty-/consistency-
aware weighting) for robust MS-UDA.

Details depend on implementation; still sen-
sitive to noisy pseudo labels and inter-source
imbalance; please refine to match your exact
paper.

Hy-MSDA [13] 2024 Remote sensing
(e.g., AID / NWPU)

Hybrid CNN + ViT Hybrid backbone with consistency
learning and dynamic source weighting
tailored to multi-source scene classifi-
cation.

Transformer components increase compute;
remote-sensing-specific tuning; generaliza-
tion beyond RS benchmarks to be estab-
lished.
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Literature Survey Research Gap

Research Gap

• Domain invariance:Pulls together multiple views of the same
underlying scene, reducing texture/season/sensor bias.

• Label noise in pseudo-label: unreliable clusters-guided pseudo-labels
degrade training.

• Rather than completely rejecting the uncertain clusters, class-aware
pseudo labels can be generated.

• Interpretability: Explanations of what regions/classes aligned are not
interpreted
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Problem Statement

Problem Statement

• Design a multi-source UDA framework for scene classification using
adaptive density based clustering and class aware pseudo label
refinement by considering uncertain clusters
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Problem Statement Objectives

Objectives

• Class-aware refinement of pseudo labels by top-k selection per class
based on pseudo-label confidence

• Provide explainability techniques such as Grad-CAM/Attention
Rollout maps for prediction of target sample.
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Problem Statement Problem Formulation

Problem Formulation

• Let there be M labeled source domains S1, . . . ,SM and one unlabeled
target domain T . Each source Sm is characterized by a joint
distribution Pm(X,Y) over inputs X∈Xm and labels Y∈Ym, from
which we observe a labeled sample Dm = {(x(m)

i , y(m)
i )}nm

i=1.
• The target domain T has a (generally different) joint distribution

PT(X,Y) over a shared set of classes k over m domains such that
Ck1 = Ck2 = ... = Ckm = Ct, from which we observe an unlabeled
sample DT = {x(T)

j }nT
j=1

• The objective of multi-source UDA is to mitigate this distribution
shift and train a model that can accurately predict the label yjt for
any target sample xjt.

Binu Jose A et al. (NITC) DARES25, ECAI2025 25 October, 2025 16 / 36



Methodology

Framework
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Methodology Adaptive Incremental Clustering

Adaptive Incremental Clustering — Part I/IV

Algorithm 1: Adaptive incremental cluster formation with dynamic den-
sity estimation and NN-based merging (Part I/IV)

1 Target feature set Ft = {f1, . . . , fn}; initial clusters C; scaling factor α1; adaptive range
constants n1, n2, n3, n4 Updated cluster list Cupdated // Precompute global statistics

2 Compute pairwise distance matrix D across Ft;
3 Compute global distance mean T = 1

n(n−1)
∑

i ̸=j Dij;
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Methodology Adaptive Incremental Clustering

Adaptive Incremental Clustering — Part II/IV

Algorithm 1: (Part II/IV)
1 foreach fnew ∈ Ft do

// Estimate Local Distance Characteristics
2 Let S = {D(fnew, fj) | fj ∈ Ft };
3 if mean(S) ≤ T then
4 Select k ∼ Uniform(n1, n2);
5 else
6 Select k ∼ Uniform(n3, n4);
7 Sort S in ascending order; set ϵ = S[k];

// Infer Local Density
8 Nϵ = { fj ∈ Ft | D(fnew, fj) ≤ ϵ };

9 Compute local density ρ =
|Nϵ|
ϵ

;
10 Compute adaptive threshold MinPts = α1 · ρ;
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Methodology Adaptive Incremental Clustering

Adaptive Incremental Clustering — Part III/IV

Algorithm 1: (Part III/IV)
1 foreach fnew ∈ Ft (cont.) do

// Decision: Assign or Evaluate
2 if |Nϵ|≥ MinPts then
3 Identify intersecting clusters Cnear = {Ci ∈ C | Nϵ ∩ Ci ̸= ∅ };
4 if |Cnear|= 0 then
5 Create new cluster Cnew = {fnew} and add to C;
6 else if |Cnear|= 1 then
7 Append fnew to the matched cluster;
8 else
9 foreach pair (Ca,Cb) ⊆ Cnear do

10 Extract features: proximity, compactness, cross-similarity;
11 Compute merge_score← Net1(·), θ ← Net2(·);
12 if merge_score ≥ θ then
13 Merge Ca ∪ Cb and add fnew;
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Methodology Adaptive Incremental Clustering

The cluster proximity (S̀p), density (S̀d), and feature similarity (S̀f) are
defined using Eq. (1), (2) and (3) respectively:

S̀p = 1 − d̀p
`dmax

(1)

S̀d =
min(ρ̀i, ρ̀j)

max(ρ̀i, ρ̀j) + ε
(2)

S̀f =
µ̀i · µ̀j

∥µ̀i∥ ∥µ̀j∥
(3)

where d̀p is the centroid distance between clusters Ci and Cj, `dmax is the
maximum possible distance between Ci and Cj, ρ̀i and ρ̀j are the cluster
densities of clusters Ci and Cj, ε is a constant, µ̀i and µ̀j are the mean
feature vectors of clusters Ci and Cj and ∥µ̀i∥ and ∥µ̀j∥ are the vector
norms.
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Methodology Adaptive Incremental Clustering

Adaptive Incremental Clustering — Part IV/IV

Algorithm 1: (Part IV/IV)
1 foreach fnew ∈ Ft (cont.) do
2 else

// Handle potential noise
3 if none of Nϵ belongs to any cluster then
4 Mark fnew as temporary noise;
5 else
6 Find nearest neighbor fnn ∈ Nϵ ∩ Cj; assign fnew to cluster of fnn;

// Noise Re-Assessment Phase
7 foreach point p previously labelled as noise do
8 Recompute neighbors Np within local ϵp;
9 if |Np|≥ MinPtsp then

10 Assign p to the nearest valid cluster;

11 return Cupdated;
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Methodology Class-Aware Adaptive Pseudo-Label Refinement

Class-aware Adaptive Pseudo-Labeling — Part I/IV

Algorithm 1: Class-aware adaptive pseudo-labeling refinement (Part
I/IV)
Input: Source features Fs with labels YS, Target features Ft, Target clusters CT , Top-k

value k, temperature τ , contrastive weight λproto, scaling factor α2
Output: Refined pseudo-labels and trained classifier
// Initialize Source Class Prototypes

1 for each source class s ∈ YS do
2 Compute initial prototype µ

(0)
s =

1
|Fss|

∑
x∈Fs

s

f(x);

// Iteratively update pseudo-labels and prototypes
3 for each training epoch m do
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Methodology Class-Aware Adaptive Pseudo-Label Refinement

Class-aware Adaptive Pseudo-Labeling — Part II/IV
Algorithm 1: (Part II/IV)

1 for each training epoch m (cont.) do
// Assign Soft Pseudo-Labels with Class-Wise Top-k Filtering

2 Initialize P[s] = ∅ for each class s;
// Pseudo-label generation

3 for each target sample xi ∈ Ft do
4 Identify cluster ci of xi from CT;
5 Compute soft probabilities:

P(yi = s) = exp(sim(f(xi), µ
(m−1)
s )/τ)∑Q

j=1 exp(sim(f(xi), µ
(m−1)
j )/τ)

Let s∗ = argmaxs P(yi = s);
// Class-aware refinement (cluster confidence)

6 Compute cluster-level confidence γci (e.g., mean intra-cluster similarity/density);
7 Compute class-aware threshold τci = α2 ·mean(γci );
8 if γci ≥ τci then
9 Add (xi,P(yi = s∗), f(xi),weight = 1.0) to P[s∗];

10 else
11 Add (xi,P(yi = s∗), f(xi),weight = 0.5) to P[s∗];
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Methodology Class-Aware Adaptive Pseudo-Label Refinement

Class-aware Adaptive Pseudo-Labeling — Part III/IV

Algorithm 1: (Part III/IV)
1 for each training epoch m (cont.) do

// Top-k selection
2 for each class s do
3 Sort P[s] by confidence and retain top-k samples;

// Update prototypes from top-k target samples
4 for each class s do

5 Compute µ
(m)
s =

∑
(xi,wi)∈P[s]top-k

wi f(xi)∑
(xi,wi)∈P[s]top-k

wi
;
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Methodology Class-Aware Adaptive Pseudo-Label Refinement

Class-aware Adaptive Pseudo-Labeling — Part IV/IV

Algorithm 1: (Part IV/IV)
1 for each training epoch m (cont.) do

// Prototype contrastive loss
2 for each pseudo-labelled sample (xi, f(xi)) do
3

Lproto(xi) = − log
exp(sim(f(xi), µ

(m)
s∗ )/τ)∑Q

j=1 exp(sim(f(xi), µ
(m)
j )/τ)

// Classifier training
4 Compute cross-entropy loss Lcls over confident samples;
5 Total loss: Ltotal = Lcls + λproto · Lproto;
6 Update network parameters using Ltotal;
7 return refined pseudo-labels s∗;
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Methodology Class-Aware Adaptive Pseudo-Label Refinement

Deep learning-based pareto front generation
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Figure 5: Deep learning-based pareto front generation.
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Methodology Class-Aware Adaptive Pseudo-Label Refinement

How the Pareto fronts with ranks are generated

1 Scores from the network. For each solution with objectives fi,
compute a score/embedding:

si = hϕ(fi).

2 Cluster scores. Run MOC algorithm on {si} to obtain clusters
C1, . . . ,CK (with centers {µk}).

3 Order clusters to form fronts. Define a monotone front quality qk:
• If d >= 1: qk = median{si : i ∈ Ck}

4 Rank. Sort clusters by qk ascending:

q(1) ≤ q(2) ≤ · · · ≤ q(K) ⇒ Front 1 = C(1), Front 2 = C(2), . . .

Every solution i ∈ C(r) receives rank r.
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Results

Table 3: Details of the Datasets

AID (A) [14] NWPU-RESISC45 (N) [15] PatternNet (P) [16] UC Merced (U) [17]

No of classes 30 45 38 21
Resolution (m) 0.5–8 0.2–30 0.062 - 4.693 0.3
Pixel size 600 × 600 256 × 256 256 x 256 256 × 256

Farmland 370 700 800 100
Forest 250 700 800 100
Parking 390 700 800 100
Residential 410 700 800 100
River 410 700 800 100
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Results

Table 4: Hyper-parameters, roles, search spaces, selection rules, and chosen
values.

Param Role Search space Selection rule Chosen
n1, n2 dense-region neighbor rank [3, 8], [8, 12] best proxy rank-sum 5, 10
n3, n4 sparse-region neighbor rank [15, 30], [40, 60] best proxy rank-sum 20, 50
λproto prototype-contrastive weight [0.1, 0.6] entropy is minimized 0.3
Top-k per-class target selection {10, 20, 50} stability vs. coverage 20
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Results

Classification accuracy

Table 5: Comparison of classification accuracy on multi-source domain adaptation
methods across various domain combinations

Domain M3SDA [5] MFSAN [6] LCt-MSDA [7] T-SVDNet [8] MCC-DA [10] PTMDA [9] SUMDA [12] RRL [11] Hy-MSDA [13] XMUDA-CLAC
(A → U) 0.887 0.912 0.873 0.854 0.940 0.944 0.944 0.946 0.959 0.965
(P → N) 0.870 0.907 0.868 0.855 0.931 0.928 0.939 0.937 0.953 0.962
(U → P) 0.879 0.910 0.870 0.859 0.938 0.930 0.933 0.933 0.947 0.954
(A, P → U) 0.883 0.919 0.890 0.865 0.950 0.951 0.949 0.944 0.968 0.972
(A, N → U) 0.895 0.920 0.905 0.860 0.945 0.948 0.950 0.951 0.972 0.977
(U, P → N) 0.917 0.940 0.908 0.881 0.967 0.968 0.965 0.962 0.978 0.978
(A, P, N → U) 0.901 0.923 0.898 0.869 0.957 0.954 0.954 0.955 0.974 0.976
(A, U, P → N) 0.922 0.928 0.886 0.884 0.964 0.960 0.963 0.955 0.977 0.978
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Results

AUC-ROC curve

(a) (A, P, N → U) (b) (A, U, P → N)
Figure 6: Classifier performance (AUC-ROC) across tasks (a) (A, P, N → U) (b)
(A, U, P → N).
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Results

Visualization

(a) (b) (c) (d)

Figure 7: Visualization of attention shift before and after domain adaptation in
(A, U, P → N)
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Results

Visualization

(a) (b) (c) (d)

Figure 8: Visual explanation of target scene prediction Using Grad-CAM and
Attention Rollout (A, U, P → N)

Binu Jose A et al. (NITC) DARES25, ECAI2025 25 October, 2025 34 / 36



Summary

Summary

• This framework effectively extracts domain-invariant features and
generates high-confidence pseudo-labels for the unlabelled target
domain.

• The robustness to class imbalance and feature drift is further
enhanced through class-aware pseudo-label refinement

• This approach is applicable for shared classes, but for a generalized
setting, we go for Universal UDA.
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