An explainable multi-source unsupervised domain adaptation framework using contrastive learning and adaptive clustering for remote sensing scene classification

Binu Jose A, Pranesh Das, Ebrahim Ghaderpour, Paolo Mazzanti

Department of Computer Science and Engineering, National Institute of Technology Calicut, Kerala, India

&

Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy

25 October, 2025

DARES'25 colocated with ECAI 2025, Bologna, Italy

Presentation Overview

- 1 Introduction
- 2 Literature Survey
- 3 Problem Statement
- 4 Methodology
- 6 Results
- **6** Summary

Domain Adaptation

Figure 2: Domain Adaptation

- Source: Labeled satellite images from dry-season(with classes farmland, forest, industrial, parking, residential, river).
- Target: Unlabeled another satellite images during monsoon.
- Aim is to predict the label of the target image.

Types of domain adaptation

Table 1: Types of domain adaptation

Types of adaptation	Source	Target
Supervised domain adaptation [1]	Labelled	mostly labelled
Semi-Supervised domain adaptation [2]	Labelled	mostly unlabelled
Unsupervised domain adaptation [3]	Labelled	fully unlabelled

Unsupervised Domain adaptation (UDA)

• Let \mathcal{X} be the input space and $\mathcal{Y} = \{1, \dots, C\}$ the label space. Source has labels, target is unlabeled:

$$\mathcal{D}_s = \{(x_i^s, y_i^s)\}_{i=1}^{n_s} \sim P_s(x, y), \qquad \mathcal{D}_t = \{x_j^t\}_{j=1}^{n_t} \sim P_t(x).$$

- We learn $h = f_{\phi} \circ g_{\theta} : \mathcal{X} \to \Delta^{C-1}$ (feature extractor g_{θ} and classifier f_{ϕ}) with loss ℓ (e.g., cross-entropy).
- Source and target loss

$$R_s(h) = \mathbb{E}_{(x,y) \sim P_s}[\ell(h(x),y)], \qquad R_t(h) = \mathbb{E}_{(x,y) \sim P_t}[\ell(h(x),y)].$$

• Goal: minimize $R_t(h)$ using \mathcal{D}_s and \mathcal{D}_t .

Pseudo-Labeling for UDA

Pseudo-Label

 A pseudo-label is a label we assign to an unlabeled sample using a model, so we can train with a supervised loss on that sample.

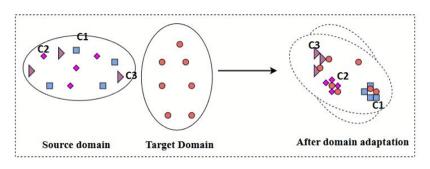


Figure 3: Illustration of Pseudo-labeling

Why contrastive learning

- Contrastive learning (CL) learns features that are both domain-invariant and class-discriminative from largely unlabeled data.
- This is essential for multi-source UDA

Multi-source UDA

- Real targets differ in many ways (sensor, season, resolution, geography).
- Data come from multiple heterogeneous sources makes the real deployment of domain adaptation.
- Both source and target share same set of labels.

Why density based clustering

- The effectiveness of UDA depends on the quality of pseudo-labels assigned to target data.
- To obtain reliable pseudo-labels, clustering algorithms groups the similar target features and use the assignments
- Density-based clustering discovers arbitrarily shaped clusters and marks low-density points as noise.
- Incremental density-based clustering [4] is an enhanced approach that updates the clustering results incrementally as new data points arrive.
- It enables efficient updates to cluster structures without requiring a complete re-clustering process.

Literature Survey

Table 2: Representative multi-source unsupervised domain adaptation (MS-UDA) methods.

Method	Year	Source → Target	Feature Extractor	Main Contribution	Limitation
		dataset			
M ³ SDA [5]	2019	DomainNet / Office-	ResNet-50	Aligns higher-order moments across	Global (class-agnostic) alignment can un-
		Home		multiple sources and target; introduced	derperform on fine-grained classes; requires
				the large-scale DomainNet benchmark for MS-UDA.	source data; sensitive to class imbalance and negative transfer.
MFSAN [6]	2019	Office-31 /	ResNet-50 / CNN	Two-stage scheme: (i) domain-specific	Many source-specific branches/head
		ImageCLEF-DA / Digit-Five		distribution alignment per source— target pair and (ii) <i>classifier</i> alignment with domain-specific heads.	losses increase complexity; fusion thresh- olds/hyperparameters sensitive; assumes closed-set label space.
LtC-MSDA [7]	2020	DomainNet / Office- Home / Office-31	ResNet-50	Builds a prototype graph across sources; Relation Alignment Loss en- forces cross-domain relational consis- tency for knowledge aggregation.	Prototype purity and memory bank maintenance are non-trivial; tuning of graph/temperature terms; limited open- /universal-set handling.

Table 2: Representative multi-source unsupervised domain adaptation (MS-UDA) methods.

Method	Year	Source → Target dataset	Feature Extractor	Main Contribution	Limitation
T-SVDNet [8]	2021	Office-Home / Do- mainNet	ResNet-50	Exploits high-order prototypical correlations; imposes tensor low-rank (T-SVD/TLR) constraints plus uncertainty-aware source weighting.	Tensor ops add compute/memory; rank/weighting hyperparameters sensi- tive; assumes clusterable class structure; requires source data at adapt time.
PTMDA [9]	2022	Office-Home / Do- mainNet (typ.)	ResNet-50	Builds pseudo target domains via group-specific adversarial subspaces with metric constraints; adds matching normalization to stabilize alignment.	Adversarial + metric objectives increase training cost; subspace design may be dataset-specific; relies on pseudo-label quality.
MCC-DA [10]	2023	Digit-Five / Office- 31 / DomainNet	ResNet-50	Decentralized MS-UDA: collaborative contrastive alignment among perdomain models without sharing raw data; periodic model aggregation.	Requires model exchange/synchronization; robustness depends on contrastive partner selection; more training rounds than centralized baselines.

Table 2: Representative multi-source unsupervised domain adaptation (MS-UDA) methods.

Method	Year	Source → Target dataset	Feature Extractor	Main Contribution	Limitation
RRL [11]	2023	DomainNet / Office-	ResNet-50	Riemannian representation learning:	Computing Riemannian distances adds over-
[]		Home / Digits		minimizes average empirical Hellinger	
				distance with theoretical bounds on MS-UDA risk.	set assumption; needs access to sources.
SUMDA [12]	2024	DomainNet / Office- Home (reported)	ResNet-50 (typ.)	Cross-source alignment strategy that leverages inter-source complementar-	Details depend on implementation; still sensitive to noisy pseudo labels and inter-source
				ities (e.g., uncertainty-/consistency- aware weighting) for robust MS-UDA.	imbalance; please refine to match your exact paper.
Hy-MSDA [13]	2024	Remote sensing (e.g., AID / NWPU)	Hybrid CNN + ViT	Hybrid backbone with consistency learning and dynamic source weighting tailored to multi-source scene classifi-	Transformer components increase compute; remote-sensing-specific tuning; generalization beyond RS benchmarks to be estab-
				cation.	lished.

Research Gap

- Domain invariance:Pulls together multiple views of the same underlying scene, reducing texture/season/sensor bias.
- Label noise in pseudo-label: unreliable clusters-guided pseudo-labels degrade training.
- Rather than completely rejecting the uncertain clusters, class-aware pseudo labels can be generated.
- Interpretability: Explanations of what regions/classes aligned are not interpreted

Problem Statement

 Design a multi-source UDA framework for scene classification using adaptive density based clustering and class aware pseudo label refinement by considering uncertain clusters

Objectives

- Class-aware refinement of pseudo labels by top-k selection per class based on pseudo-label confidence
- Provide explainability techniques such as Grad-CAM/Attention Rollout maps for prediction of target sample.

Problem Formulation

- Let there be M labeled source domains S_1, \ldots, S_M and one unlabeled target domain \mathcal{T} . Each source S_m is characterized by a joint distribution $P_m(X,Y)$ over inputs $X \in \mathcal{X}_m$ and labels $Y \in \mathcal{Y}_m$, from which we observe a labeled sample $\mathcal{D}_m = \{(x_i^{(m)}, y_i^{(m)})\}_{i=1}^{n_m}$.
- The target domain \mathcal{T} has a (generally different) joint distribution $P_{\mathcal{T}}(X,Y)$ over a shared set of classes k over m domains such that $C_{k1}=C_{k2}=...=C_{km}=C_t$, from which we observe an unlabeled sample $\mathcal{D}_{\mathcal{T}}=\{x_j^{(\mathcal{T})}\}_{j=1}^{n_{\mathcal{T}}}$
- The objective of multi-source UDA is to mitigate this distribution shift and train a model that can accurately predict the label y_j^t for any target sample x_i^t .

Framework

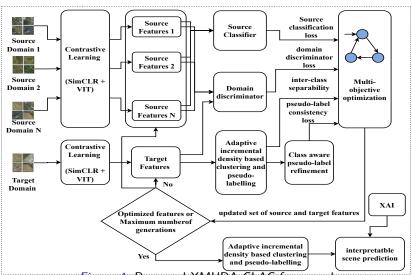


Figure 4: Proposed XMUDA-CLAC framework

Adaptive Incremental Clustering — Part I/IV

Algorithm 1: Adaptive incremental cluster formation with dynamic density estimation and NN-based merging (Part I/IV)

- 1 Target feature set $F_t = \{f_1, \dots, f_n\}$; initial clusters \mathcal{C} ; scaling factor α_1 ; adaptive range constants n_1, n_2, n_3, n_4 Updated cluster list $\mathcal{C}_{\text{updated}}$ // Precompute global statistics
- 2 Compute pairwise distance matrix D across F_t ;
- 3 Compute global distance mean $T = \frac{1}{n(n-1)} \sum_{i \neq j} D_{ij}$;

Adaptive Incremental Clustering — Part II/IV

Algorithm 1: (Part II/IV)

```
1 foreach f_{new} \in F_t do

// Estimate Local Distance Characteristics

Let S = \{D(f_{new}, f_j) \mid f_j \in F_t\};

if mean(S) \leq T then

| Select k \sim Uniform(n_1, n_2);

else

| Select k \sim Uniform(n_3, n_4);

Sort S in ascending order; set \epsilon = S[k];

// Infer Local Density

8 N_{\epsilon} = \{f_j \in F_t \mid D(f_{new}, f_j) \leq \epsilon\};

Compute local density \rho = \frac{|N_{\epsilon}|}{\epsilon};

Compute adaptive threshold MinPts = \alpha_1 \cdot \rho;
```

Adaptive Incremental Clustering — Part III/IV

Algorithm 1: (Part III/IV)

```
1 foreach f_{new} \in F_t (cont.) do
          // Decision: Assign or Evaluate
          if |N_{\epsilon}| > \text{MinPts} then
                 Identify intersecting clusters C_{\text{near}} = \{ C_i \in C \mid N_{\epsilon} \cap C_i \neq \emptyset \};
                 if |\mathcal{C}_{near}| = 0 then
                       Create new cluster C_{\text{new}} = \{f_{\text{new}}\} and add to C;
                 else if |\mathcal{C}_{near}| = 1 then
                       Append f_{\text{new}} to the matched cluster;
                 else
                        foreach pair (C_a, C_b) \subseteq C_{near} do
                              Extract features: proximity, compactness, cross-similarity;
                              Compute merge_score \leftarrow \operatorname{Net}_1(\cdot), \theta \leftarrow \operatorname{Net}_2(\cdot);
11
                              if merge \ score > \theta then
12
                                Merge C_a \cup C_b and add f_{new};
13
```

The cluster proximity (\hat{S}_p) , density (\hat{S}_d) , and feature similarity (\hat{S}_f) are defined using Eq. (1), (2) and (3) respectively:

$$\dot{S}_p = 1 - \frac{\dot{d}_p}{\dot{d}_{max}} \tag{1}$$

$$\hat{S}_d = \frac{\min(\hat{\rho}_i, \hat{\rho}_j)}{\max(\hat{\rho}_i, \hat{\rho}_j) + \varepsilon}$$
 (2)

$$\hat{S}_f = \frac{\hat{\mu}_i \cdot \hat{\mu}_j}{\|\hat{\mu}_i\| \|\hat{\mu}_j\|} \tag{3}$$

where \grave{d}_p is the centroid distance between clusters C_i and C_j , \grave{d}_{max} is the maximum possible distance between C_i and C_j , $\grave{\rho}_i$ and $\grave{\rho}_j$ are the cluster densities of clusters C_i and C_j , ε is a constant, $\grave{\mu}_i$ and $\grave{\mu}_j$ are the mean feature vectors of clusters C_i and C_j and C_j and C_j and C_j and C_j are the vector norms.

◆□▶◆□▶◆壹▶◆壹▶ 壹 からで

Adaptive Incremental Clustering — Part IV/IV

Algorithm 1: (Part IV/IV)

1 **foreach** $f_{new} \in F_t$ (cont.) **do**

```
else

// Handle potential noise

if none of N_{\epsilon} belongs to any cluster then

| Mark f_{\text{new}} as temporary noise;

else

Find nearest neighbor f_{nn} \in N_{\epsilon} \cap C_{j}; assign f_{\text{new}} to cluster of f_{nn};

// Noise Re-Assessment Phase

foreach point p previously labelled as noise do

Recompute neighbors N_{p} within local \epsilon_{p};

if |N_{p}| \ge \text{MinPts}_{p} then

Assign p to the nearest valid cluster;

return C_{\text{updated}};
```

Class-aware Adaptive Pseudo-Labeling — Part I/IV

Algorithm 1: Class-aware adaptive pseudo-labeling refinement (Part I/IV)

Input: Source features F_s with labels Y_S , Target features F_t , Target clusters C_T , Top-k value k, temperature τ , contrastive weight λ_{proto} , scaling factor α_2

Output: Refined pseudo-labels and trained classifier

// Initialize Source Class Prototypes

1 for each source class $s \in Y_S$ do

Compute initial prototype
$$\mu_s^{(0)} = \frac{1}{|F_s^s|} \sum_{x \in F_s} f(x);$$

// Iteratively update pseudo-labels and prototypes

3 for each training epoch m do

Class-aware Adaptive Pseudo-Labeling — Part II/IV

Algorithm 1: (Part II/IV)

```
1 for each training epoch m (cont.) do
        // Assign Soft Pseudo-Labels with Class-Wise Top-k Filtering
        Initialize \mathcal{P}[s] = \emptyset for each class s;
        // Pseudo-label generation
        for each target sample x_i \in F_t do
              Identify cluster c_i of x_i from C_T;
              Compute soft probabilities:
                                      P(y_i = s) = \frac{\exp(\sin(f(x_i), \mu_s^{(m-1)})/\tau)}{\sum_{i=1}^{Q} \exp(\sin(f(x_i), \mu_s^{(m-1)})/\tau)}
               Let s^* = \arg \max_s P(y_i = s);
              // Class-aware refinement (cluster confidence)
```

```
Let s^* = \arg\max_s P(y_i = s); 

// Class-aware refinement (cluster confidence)

Compute cluster-level confidence \gamma_{c_i} (e.g., mean intra-cluster similarity/density);

Compute class-aware threshold \tau_{c_i} = \alpha_2 \cdot \operatorname{mean}(\gamma_{c_i});

if \gamma_{c_i} \geq \tau_{c_i} then

Add (x_i, P(y_i = s^*), f(x_i), \operatorname{weight} = 1.0) to \mathcal{P}[s^*];

else

Add (x_i, P(y_i = s^*), f(x_i), \operatorname{weight} = 0.5) to \mathcal{P}[s^*];
```

Class-aware Adaptive Pseudo-Labeling — Part III/IV

Algorithm 1: (Part III/IV)

```
1 for each training epoch m (cont.) do

// Top-k selection
for each class s do

Sort \mathcal{P}[s] by confidence and retain top-k samples;

// Update prototypes from top-k target samples
for each class s do

Compute \mu_s^{(m)} = \frac{\sum_{(x_i, w_i) \in \mathcal{P}[s]_{\text{top-}k}} w_i f(x_i)}{\sum_{(x_i, w_i) \in \mathcal{P}[s]_{\text{top-}k}} w_i};
```

Class-aware Adaptive Pseudo-Labeling — Part IV/IV

Algorithm 1: (Part IV/IV)

```
1 for each training epoch m (cont.) do 

// Prototype contrastive loss for each pseudo-labelled sample (x_i, f(x_i)) do 

\mathcal{L}_{proto}(x_i) = -\log \frac{\exp(\sin(f(x_i), \mu_{s^*}^{(m)})/\tau)}{\sum_{j=1}^{Q} \exp(\sin(f(x_i), \mu_j^{(m)})/\tau)}

// Classifier training Compute cross-entropy loss \mathcal{L}_{cls} over confident samples; 
Total loss: \mathcal{L}_{total} = \mathcal{L}_{cls} + \lambda_{proto} \cdot \mathcal{L}_{proto}; Update network parameters using \mathcal{L}_{total};
```

7 return refined pseudo-labels s*;

Deep learning-based pareto front generation

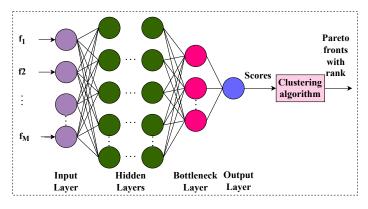


Figure 5: Deep learning-based pareto front generation.

How the Pareto fronts with ranks are generated

1 Scores from the network. For each solution with objectives f_i , compute a score/embedding:

$$s_i = h_{\phi}(\mathbf{f}_i).$$

- **2 Cluster scores.** Run MOC algorithm on $\{s_i\}$ to obtain clusters C_1, \ldots, C_K (with centers $\{\mu_k\}$).
- **3** Order clusters to form fronts. Define a monotone front quality q_k :
 - If d >= 1: $q_k = \text{median}\{s_i : i \in C_k\}$
- **4 Rank.** Sort clusters by q_k ascending:

$$q_{(1)} \leq q_{(2)} \leq \cdots \leq q_{(K)} \ \Rightarrow \ \operatorname{Front} \ 1 = C_{(1)}, \ \operatorname{Front} \ 2 = C_{(2)}, \ \ldots$$

Every solution $i \in C_{(r)}$ receives **rank** r.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Table 3: Details of the Datasets

	AID (A) [14]	NWPU-RESISC45 (N) [15]	PatternNet (P) [16]	UC Merced (U) [17]
No of classes	30	45	38	21
Resolution (m)	0.5-8	0.2-30	0.062 - 4.693	0.3
Pixel size	600×600	256×256	256 × 256	256×256
Farmland	370	700	800	100
Forest	250	700	800	100
Parking	390	700	800	100
Residential	410	700	800	100
River	410	700	800	100

Table 4: Hyper-parameters, roles, search spaces, selection rules, and chosen values.

Param	Role	Search space	Selection rule	Chosen
n_1, n_2 n_3, n_4 λ_{proto} Top- k	dense-region neighbor rank	[3,8], [8,12]	best proxy rank-sum	5, 10
	sparse-region neighbor rank	[15,30], [40,60]	best proxy rank-sum	20, 50
	prototype-contrastive weight	[0.1,0.6]	entropy is minimized	0.3
	per-class target selection	{10,20,50}	stability vs. coverage	20

Classification accuracy

Table 5: Comparison of classification accuracy on multi-source domain adaptation methods across various domain combinations

Domain	M ³ SDA [5]	MFSAN [6]	LCt-MSDA [7]	T-SVDNet [8]	MCC-DA [10]	PTMDA [9]	SUMDA [12]	RRL [11]	Hy-MSDA [13]	XMUDA-CLAC
$\begin{array}{c} (A \to U) \\ (P \to N) \\ (U \to P) \end{array}$	0.887	0.912	0.873	0.854	0.940	0.944	0.944	0.946	0.959	0.965
	0.870	0.907	0.868	0.855	0.931	0.928	0.939	0.937	0.953	0.962
	0.879	0.910	0.870	0.859	0.938	0.930	0.933	0.933	0.947	0.954
$ \begin{array}{l} (A,P\toU) \\ (A,N\toU) \\ (U,P\toN) \end{array} $	0.883	0.919	0.890	0.865	0.950	0.951	0.949	0.944	0.968	0.972
	0.895	0.920	0.905	0.860	0.945	0.948	0.950	0.951	0.972	0.977
	0.917	0.940	0.908	0.881	0.967	0.968	0.965	0.962	0.978	0.978
$\begin{array}{c} (A,P,N\toU) \\ (A,U,P\toN) \end{array}$	0.901	0.923	0.898	0.869	0.957	0.954	0.954	0.955	0.974	0.976
	0.922	0.928	0.886	0.884	0.964	0.960	0.963	0.955	0.977	0.978

AUC-ROC curve

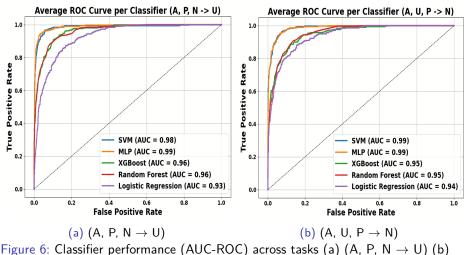
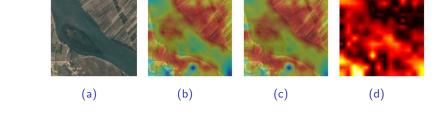


Figure 6: Classifier performance (AUC-ROC) across tasks (a) (A, P, N \rightarrow U) (b) (A, U, P \rightarrow N).

Visualization

Original Image



Grad-CAM After Adaptation

Grad-CAM Before Adaptation

Figure 7: Visualization of attention shift before and after domain adaptation in (A, U, P \rightarrow N)

Attention Change Map

Visualization

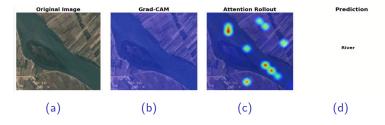


Figure 8: Visual explanation of target scene prediction Using Grad-CAM and Attention Rollout (A, U, P \rightarrow N)

Summary

- This framework effectively extracts domain-invariant features and generates high-confidence pseudo-labels for the unlabelled target domain.
- The robustness to class imbalance and feature drift is further enhanced through class-aware pseudo-label refinement
- This approach is applicable for shared classes, but for a generalized setting, we go for Universal UDA.

References I

- [1] Han-Kai Hsu et al. "Progressive domain adaptation for object detection". In: *Proceedings of the IEEE/CVF winter conference on applications of computer vision*. 2020, pp. 749–757.
- [2] Yu-Chu Yu and Hsuan-Tien Lin. "Semi-supervised domain adaptation with source label adaptation". In: *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2023, pp. 24100–24109.
- [3] Yixin Zhang, Zilei Wang, and Weinan He. "Class relationship embedded learning for source-free unsupervised domain adaptation". In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, pp. 7619–7629.
- [4] Rudolf Scitovski and Kristian Sabo. "DBSCAN-like clustering method for various data densities". In: *Pattern Analysis and Applications* 23.2 (2020), pp. 541–554.

References II

- [5] Xingchao Peng et al. "Moment matching for multi-source domain adaptation". In: *Proceedings of the IEEE/CVF international conference on computer vision*. 2019, pp. 1406–1415.
- [6] Yongchun Zhu, Fuzhen Zhuang, and Deqing Wang. "Aligning domain-specific distribution and classifier for cross-domain classification from multiple sources". In: *Proceedings of the AAAI* conference on artificial intelligence. Vol. 33. 01. 2019, pp. 5989–5996.
- [7] Hang Wang et al. "Learning to combine: Knowledge aggregation for multi-source domain adaptation". In: European Conference on Computer Vision. Springer. 2020, pp. 727–744.

References III

- [8] Ruihuang Li et al. "T-svdnet: Exploring high-order prototypical correlations for multi-source domain adaptation". In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021, pp. 9991–10000.
- [9] Chuan-Xian Ren et al. "Multi-source unsupervised domain adaptation via pseudo target domain". In: *IEEE Transactions on Image Processing* 31 (2022), pp. 2122–2135.
- [10] Yikang Wei et al. "Multi-source collaborative contrastive learning for decentralized domain adaptation". In: IEEE Transactions on Circuits and Systems for Video Technology 33.5 (2022), pp. 2202–2216.
- [11] Sentao Chen, Lin Zheng, and Hanrui Wu. "Riemannian representation learning for multi-source domain adaptation". In: Pattern Recognition 137 (2023), p. 109271.

References IV

- [12] Mengmeng Li et al. "Cross-domain urban land use classification via scenewise unsupervised multisource domain adaptation with transformer". In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 17 (2024), pp. 10051–10066.
- [13] Kai Xu et al. "Enhancing Remote Sensing Scene Classification with Hy-MSDA: A Hybrid CNN-Transformer for Multi-Source Domain Adaptation". In: *IEEE Transactions on Geoscience and Remote Sensing* (2024).
- [14] Gui-Song Xia et al. "AID: A benchmark data set for performance evaluation of aerial scene classification". In: *IEEE Transactions on Geoscience and Remote Sensing* 55.7 (2017), pp. 3965–3981.
- [15] Gong Cheng, Junwei Han, and Xiaoqiang Lu. "Remote sensing image scene classification: Benchmark and state of the art". In: *Proceedings of the IEEE* 105.10 (2017), pp. 1865–1883.

References V

- [16] Weixun Zhou et al. "PatternNet: A benchmark dataset for performance evaluation of remote sensing image retrieval". In: ISPRS journal of photogrammetry and remote sensing 145 (2018), pp. 197–209.
- [17] Yi Yang and Shawn Newsam. "Bag-of-visual-words and spatial extensions for land-use classification". In: *Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems.* 2010, pp. 270–279.

Thank you

Email: binujose_p200050cs@nitc.ac.in, praneshdas@nitc.ac.in, ebrahim.ghaderpour@uniroma1.it, paolo.mazzanti@uniroma1.it