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Forecasting wildfires
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Motivation

High variability 
between fire 
seasons

Climate 
change fosters 
extreme fire 
conditions
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Challenges

4

Prapas et al., Deep Learning Methods for Daily Wildfire Danger Forecasting. NeurIPS
Workshop on Artificial Intelligence for Humanitarian Assistance and Disaster 

Response (2021)
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Earth is a complex inter-connected system

Teleconnections are long-range 
spatiotemporal connections in the 
earth system

Memory effects refer to the temporal 
dynamics of earth system variables 

Source: Statistical physics approaches to the complex Earth system

Chen et al. (2016), Env. Res. 
Letts.

Kim et al. (2020), Sci. Adv.

Yu et al. (2020), Nature coms.

Justino et al. (2022), Clim. & 
Atm. Sci.

Cardil et al. (2023), Nature 
coms.

https://www.researchgate.net/publication/346073024_Statistical_physics_approaches_to_the_complex_Earth_system
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SeasFire Cube

Resolution: 8days x 0.25° x 0.25°

Extent: Global, 2001 - 2020
Wildfire drivers

Meteorology (ERA5)
Satellite Observations (MODIS)
Vegetation, Surface Temperature
Oceanic Indices (NOAA)
Population Density (NASA SEDAC), Land 
Cover (ESA CCI)

Wildfire variables
Burned Areas (GFED, FireCCI, GWIS)
Fire Emissions (GFAS)SeasFire Cube: A Global Dataset for Seasonal Fire Modeling in the Earth System 

[Data set]. Zenodo. https://doi.org/10.5281/zenodo.7108392

Karasante et al. SeasFire cube-a multivariate dataset for global wildfire modeling. 
Scientific Data (2025)

Design choices: granularity 

https://doi.org/10.5281/zenodo.7108392
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Transformers: TeleViT architecture
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How robust are the predictions?
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How robust are the predictions?
Michail et al. FireCastNet: Earth-as-a-graph for 

seasonal fire prediction. arXiv preprint arXiv
(2025)
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Class imbalance
A blessing and a curse - Class 
imbalance in natural hazards
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AI4Extremes

Natural hazards are by definition 
extreme events → Rare

Difficult to acquire a dedicated dataset 
for each problem

Depending on the problem formulation, 
the spatial coverage and the used 
sensors, different annotations may be 
required

Annotations require expert knowledge

Spatiotemporal generalization 
becomes way harder with limited data

E.g. It is extremely difficult to predict 
burned areas in Africa, when using data 
solely from the Mediterranean for training 

Image source: Dr. Robert Rohde
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AI4EO challenges for disaster management

Big data

Labeling (imbalance + noisy labels)

Generalization

Uncertainty in forecasting

Stochastic nature, complex, non-linear
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Large unlabeled datasets
Self-supervised pre-training
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Representation learning

Deep learning success depends on learning meaningful, information-rich 
representations by training on large datasets

Images are complex high-dimensional arrays →What is a good representation?
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Supervised learning

Mapping an image to a discrete label which is 
associated to a visual concept

Early/powerful foundation models when 
trained on large datasets

Standard way to develop model 
backbones

Annotation is expensive and limited!

Especially in EO where expert eyes or 
field measurements might be needed

Gan, Zhe, et al. "Recent advances in vision foundation models" CVPR 
2023 tutorial.
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SSL in the natural image domain

Solving a meaningful 
pretext task

e.g. Rotation 
prediction and Jigsaw 
puzzles 

Instance discrimination
Contrastive learning 

e.g., SimCLR, MoCo, etc.
Information restoration

e.g. Colorization, 
Masked Autoencoders, 
etc.

Self-distillation methods
e.g. BYOL, SimSiam

Nice overview on SSL methods and tips:
Balestriero et al. A cookbook of self-
supervised learning. arXiv (2023).

Wang, Yi, et al. "Self-
Supervised Learning in 
Remote Sensing: A 
Review." IEEE GRSM (2022).
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A. Predictive self-supervised learning

Hand-designed pretext tasks utilizing the intrinsic characteristics of data
Solving Jigsaw puzzles [1]

Rotation prediction [2]

[1] Noroozi et al., Unsupervised learning of visual representations by solving jigsaw puzzles. European conference on computer vision (2016)
[2] Gidaris et al., Unsupervised representation learning by predicting image rotations. arXiv (2018)
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A. Predictive self-supervised learning in EO

The color out of space[1]:
Predict RGB channels from multi-
spectral information as a pretext task
Downside: Learns an encoder only for 
MS channels, not RGB

Geography-aware SSL [2]
Predict geolocation (grouped in K 
clusters) of an image
MoCo-v2 formulation except the 
positive pairs come from different 
temporal points
Intuitively, could provide invariance in 
temporal-based changes 

[1] Vincenzi et al., The color out of space: learning self-supervised representations for earth observation imagery. ICPR IEEE (2021)
[2] Ayush et al., Geography-aware self-supervised learning. ICCV (2021)
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B. Contrastive self-supervised learning

Joint-embedding architectures with instance 
discrimination

SimCLR [1]

[1] Chen et al., A simple framework for contrastive learning of visual representations. ICML (2020)

Encoder

Projector

Representations

Heavy dependance on augmentation set
Heuristics from natural images don’t fit to 
other domains
Negative samples are crucial to learning 
good representations
Requires large batch sizes → More 
negative samples
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B. Contrastive self-supervised learning in EO

What makes for good views / data 
augmentations in EO? 

Tailored augmentations per sensor/product, e.g. for 
InSAR [1]
Exploit seasonality and geolocation: Seasonal 
contrast (SeCo) [2]:

Positives: temporal alterations + hand crafted 
augmentations
Negatives: different locations

What about other modalities?
Difficult to identify optimal set of augmentations 
per modality
EO is highly multi-modal

[1] Bountos, et al. Self-supervised contrastive learning for volcanic unrest detection. IEEE Geoscience and Remote Sensing Letters (2021)
[2] Manas, et al. Seasonal contrast: Unsupervised pre-training from uncurated remote sensing data. ICCV (2021)

Three representation spaces
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C. Generative self-supervised learning

Masked Autoencoders [1] → Information restoration pretext task 

[1] He et al., Masked autoencoders are scalable vision learners. CVPR (2022)
[2] Przewięźlikowski et al., Beyond [cls]: Exploring the true potential of Masked Image Modeling representations. arXiv (2024)

applied only to 
visible patches 

(efficiency)

ViT
shared learnable mask 

token
Pos. Emb

MSE 
(masked patches)

Efficient
Generic pretext task, applicable to any 
domain → highly popular in EO
Does not rely on hand crafted 
augmentations → important to EO
Good as initialization
Representations are not highly 
discriminative[1][2]] → Linear probing is 
ineffective
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C. Generative self-supervised learning for EO

SatMAE - Masked Autoencoder for multi-spectral temporal data [1]
Carefully exploits the unique information from the temporal and spectral dimensions of RS data 
Patches can be generated in both temporal and spectral dimensions
Temporal or spectral group encoding

[1] Cong et al., Satmae: Pre-training transformers for temporal and multi-spectral satellite imagery. Advances in NeurIPS (2022)
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Overall guidelines

Unless one has massive compute resources, MoCo-v2 is a good way to compensate 
for smaller batch sizes in contrastive learning

Data augmentations should be carefully selected taking in mind the problem at 
hand

Considering temporal based augmentation is a convenient idea in Remote Sensing 
(free, naturally occurring data augmentations)

MAE is a good way to avoid choosing an augmentation set

An ablation on the masking-ratio however, is necessary depending on the data source 
and the expected downstream tasks

In real life scenarios we are not restricted to linear evaluation

Fine-tuning more layers may provide significant improvements
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Foundation Models in EO
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Sensor-agnostic FMs for EO

Earth Observation data vary in 
terms of:

Scales of objects [1]
Sensor
GSD

From <1cm per pixel to >1km per 
pixel  

Environmental conditions

Vision: Can we create a generalist 
EO Foundation Model [2]?

[1] Ouaknine et al., OpenForest: a data catalog for machine learning in forest monitoring. Environmental Data Science (2025)
[2] Lacoste et al., Geo-bench: Toward foundation models for earth monitoring. Advances in NeurIPS (2023):
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EO pretraining datasets

Datasets getting bigger and bigger, when will it stop?

Wang et al., Towards a unified Copernicus foundation model for earth 
vision, ICCV (2025)
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The evolution tree for EO foundation models

Wang et al., Towards a unified Copernicus foundation model for 
earth vision, ICCV (2025)

Image © Yi Wang. PhD Defense, Technical University of 
Munich (2025)
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Requirements & evaluation of sensor-
agnostic FMs
To be effective, EO foundation models must:

Generalize across diversity
Multi-sensor & multi-modality
Global, multi-scale, multi-temporal

Be robust to real-world challenges
Resist spatio-temporal shifts
Handle data scarcity (limited coverage, costly labels, rare events)

Produce quality representations
Meaningful per modality
Capture cross-modal interactions

Be broadly applicable
Flexible across tasks (classification, segmentation, detection, 
change, instance)
Benchmarked on diverse, harmonized EO datasets

Zhu et al., On the Foundations of 
Earth and Climate Foundation 

Models. arXiv (2024) 
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Evaluation of sensor-agnostic FMs

Sustain-Bench [1]
15 tasks oriented towards 7 SDGs

Multimodal

Global spatial coverage

[1] Yeh et al., Sustainbench: Benchmarks for monitoring the sustainable development goals with machine learning. arXiv (2021).
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Unimodal FM – Prithvi 1.0

Based on the Harmonized Landsat-Sentinel (HLS) imagery

Jakubik et al., Foundation models for generalist geospatial artificial intelligence. arXiv (2023)
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Challenges – multimodal

Yi et al., 
Towards a 
Unified 
Copernicus 
Foundation 
Model for Earth 
Vision. ICCV
2025 

Xiong et al., Neural Plasticity-Inspired Multimodal Foundation 
Model for Earth Observation. arXiv (2024)

Bountos et al., 
FoMo: Multi-
Modal, Multi-
Scale and 
Multi-Task 
Remote 
Sensing 
Foundation 
Models for 
Forest 
Monitoring. 
AAAI (2025)
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Challenges – temporal dimension

Galileo [1], the successor of PRESTO [2]

AnySat [3] is also multi-temporal

[1] Tseng et al., Galileo: Learning Global & Local Features of Many Remote Sensing Modalities. arXiv (2025)
[2] Tseng et al., Lightweight, pre-trained transformers for remote sensing timeseries. arXiv (2023)
[3] Astruc et al., AnySat: One Earth Observation Model for Many Resolutions, Scales, and Modalities. CVPR (2025)
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Challenges - scale

TerraMind is the first 
“any-to-any” generative, 
multimodal foundation model 
for EO, pre-trained on a 
massive dataset comprising 1 
trillion tokens derived from 9 
million spatio-temporal 
samples across nine 
geospatial modalities, 
including optical, radar, DEM, 
NDVI, land-use maps, 
coordinates, and captions 

Jakubik et al., TerraMind: Large-Scale Generative Multimodality for Earth Observation. arXiv (2025)
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Geospatial Foundational Disappointments

https://christopherren.substack.com/p/geospatial-foundational-disappointments
After 10²¹ FLOPs and 500 B patches, IBM’s TerraMind beats a supervised U-Net by just 
+2 mIoU on PANGAEA; losing on 5/9 tasks, most other GFMs do worse
Current pre-training objectives are unlikely to scale further with compute and data
“I am disappointed.”

https://christopherren.substack.com/p/geospatial-foundational-disappointments
https://christopherren.substack.com/p/geospatial-foundational-disappointments
https://christopherren.substack.com/p/geospatial-foundational-disappointments
https://christopherren.substack.com/p/geospatial-foundational-disappointments
https://christopherren.substack.com/p/geospatial-foundational-disappointments
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Limitations
There are many shortcuts to achieve high performance in a 
dataset but:

Can we assess how well a model encodes intra- and 
inter-modality properties and relationships?

Pre-training is not harmonized:
Difficult to identify the source of performance 
improvements: Is it the pretraining dataset/setup or the 
methodology?

Do we really need all these data? → Inherent redundancy in EO 
data
Do we really need such big models?
Fine-tuning the whole model defeats the purpose of a FM
EO FMs do not (yet) outperform supervised models
EO data are inherently multi-temporal. 

Most approaches do not explicitly model this temporal 
nature and focus on single-image pretraining pipelines

A methodological evaluation of 
the extracted representations 

is currently missing

Mechanistic interpretability at 
scale → understand the 

underlying processes of the 
models using interpretability 

techniques

Larger does not imply better, 
scalability through 

understanding the domain 
better 

Several unresolved challenges 
ahead!
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Outlook: global embeddings

“New AI model integrates petabytes of Earth 
observation data to generate a unified data 
representation that revolutionizes global 
mapping and monitoring”

Brown et al., AlphaEarth Foundations: An embedding field model for accurate and 
efficient global mapping from sparse label data. arXiv (2025)

Klemmer et al. Satclip: Global, general-purpose location embeddings 
with satellite imagery. AAAI (2025)

Wang et al., Towards a unified Copernicus foundation model for 
earth vision. ICCV (2025)
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The way forward for Earth and climate FM

Diverse Data: Satellite, reanalysis, simulations – globally 
and cross-modality balanced

Metadata: Standardized for time, location, modality; 
enables embeddings
Dynamic Encoding: Adapts to missing/mixed modalities 
using conditional computation

LLM Alignment: Connects EO/climate models with 
language for reasoning & interaction. 

Geo-MoE: Geographical mixture of expert models for 
scalable specialization

Multimodal Learning: Joint & modality-specific 
representations

Spatio-Temporal Modeling: Scales-aware attention across 
time & space
Self-/Weak Supervision: Scalable training via 
contrastive/predictive methods
Continual Learning: Avoids forgetting; adapts to new data

Uncertainty: Quantile regression, ensembles, sparse GPs

Physics-Aware: Respects physical laws via embedded 
constraints Zhu et al., On the Foundations of Earth and Climate Foundation Models. arXiv (2024)
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Uncertainty
Probabilistic ML in Natural Hazards
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Uncertainty (philosophically) 

• Aleatoric (data) — notion of randomness 
• Epistemic (model) — lack of knowledge

* alea: latin word, game of dice (random)
episteme: greek word, meaning knowledge

Epistemic uncertainty can be 
reduced with more data

Aleatoric uncertainty depends 
on the data generation process 
and cannot be reduced

Tuna et al. “Exploiting Epistemic Uncertainty of the Deep Learning Models to  Generate Adversarial 

Samples.” arXiv, February 13, 2021. https://doi.org/10.48550/arXiv.2102.04150.

Hüllermeier et al. “Aleatoric and Epistemic Uncertainty in Machine Learning: An 

Introduction to Concepts and Methods.” Machine Learning 110, no. 3 (March 

2021): 457–506. https://doi.org/10.1007/s10994-021-05946-3.

Gawlikowski et al. “A Survey of Uncertainty in Deep Neural Networks.” ArXiv:2107.03342 

[Cs, Stat], July 7, 2021. http://arxiv.org/abs/2107.03342.

https://doi.org/10.48550/arXiv.2102.04150
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1007/s10994-021-05946-3
http://arxiv.org/abs/2107.03342
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An example

Mesogeos dataset [1]
Uncertainty-aware deep learning for wildfire 
danger forecasting [2]
Capture epistemic uncertainty using Bayesian 
NNs
Capture aleatoric uncertainty by accounting for 
the heteroscedastic label noise [3]

[1] Kondylatos et al., 
Mesogeos: A multi-purpose 
dataset for data-driven 
wildfire modeling in the 
mediterranean. NeurIPS
(2023) 

[2] Kondylatos et al., 
Uncertainty-aware deep 
learning for wildfire danger 
forecasting, arXiv (2025)

[3] Collier et al., A simple 
probabilistic method for 
deep classification under 
input-dependent label 
noise. arXiv (2020)
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Zero-shot uncertainty estimation
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Foundation models for Earth Observation

Lacoste et al., Geo-bench: Toward foundation models for earth monitoring. Advances in NeurIPS (2023)

Image taken from [1].
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Generalizable uncertainty estimations

Zero-shot uncertainty 
estimations

Image adapted from [1].

[1] Lacoste et al., Geo-bench: Toward foundation models for earth monitoring. Advances in NeurIPS (2023)
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Pretrained representation uncertainties

Kirchhof et al., Pretrained visual uncertainties. 
arXiv (2024)

Data uncertainty 
proxy

Representation 
space

Kondylatos S., Bountos N.I. et al., On the 
Generalization of Representation Uncertainty in 

Earth Observation. ICCV (2025)
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Zero shot uncertainty estimation
Kondylatos S., Bountos N.I. et al., On the 

Generalization of Representation Uncertainty in 
Earth Observation. ICCV (2025)
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Can we go beyond sample-based uncertainty estimations?

M
a
ri
d
a

F
la
ir

Each ViT patch can be 
considered as an EO 
image

Estimating uncertainties 
for each patch results in 
localized uncertainty 
estimation

Flair and Marida uncertainties estimated from BigEarthNet pretrained 
ViT-Large vis-a-vis downstream pixel loss.

Kondylatos S., Bountos N.I. et al., On the 
Generalization of Representation Uncertainty in 
Earth Observation. ICCV (2025)
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More about us…

https://orion-ai-lab.github.io/

https://github.com/orion-ai-lab

Spring School: AI for Modeling and 
Understanding Climate Extremes    

ThiningEarth

https://orion-ai-lab.github.io/
https://orion-ai-lab.github.io/
https://orion-ai-lab.github.io/
https://orion-ai-lab.github.io/
https://orion-ai-lab.github.io/
https://github.com/orion-ai-lab
https://github.com/orion-ai-lab
https://github.com/orion-ai-lab
https://github.com/orion-ai-lab
https://github.com/orion-ai-lab


Thank you for 
your attention

Ioannis Papoutsis

ipapoutsis@mail.ntua.gr
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