From self-supervision to trustworthy EO foundation models

DARES 2025

Ioannis Papoutsis (<u>ipapoutsis@mail.ntua.gr</u>)

Assistant Professor, National Technical University of Athens Associate Researcher, National Observatory of Athens Affiliated Researcher, Archimedes / Athena Research Center https://orion-ai-lab.github.io/

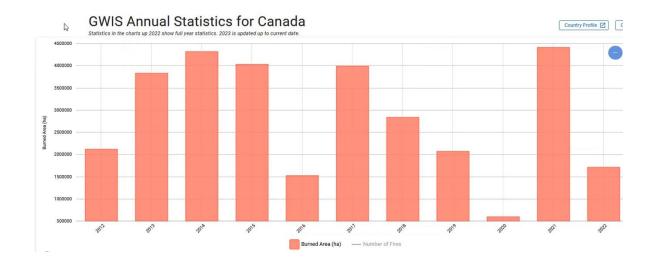
Remote Sensing Laboratory **National Technical University of Athens**

orion lab

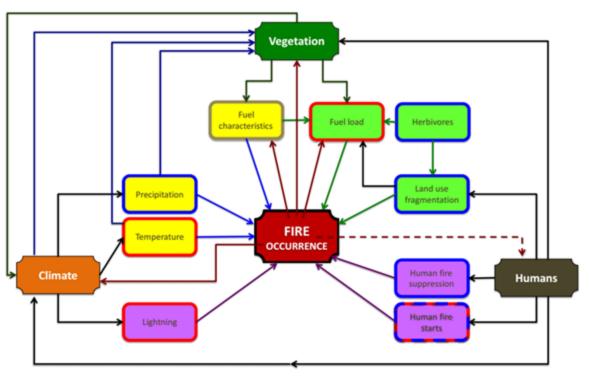
Forecasting wildfires

Motivation

- High variability between fire seasons
- **Example** Climate change fosters extreme fire conditions



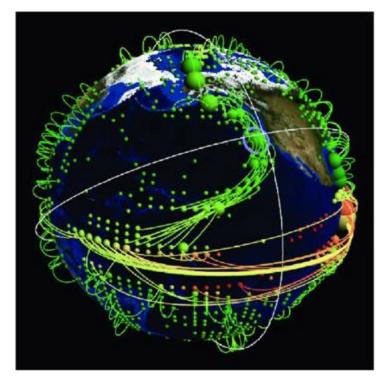
Challenges



Fire Drivers. Source: Hantson et al. "The status and challenge of global fire modelling" (2016)

Earth is a complex inter-connected system

Accepted: 12 January 2023



Source: Statistical physics approaches to the complex Earth system

- Teleconnections are long-range spatiotemporal connections in the earth system
- Memory effects refer to the temporal dynamics of earth system variables

Midhun Mohan9 & Sergio de-Miguel @ 1,3

Chen et al. (2016), Env. Res.

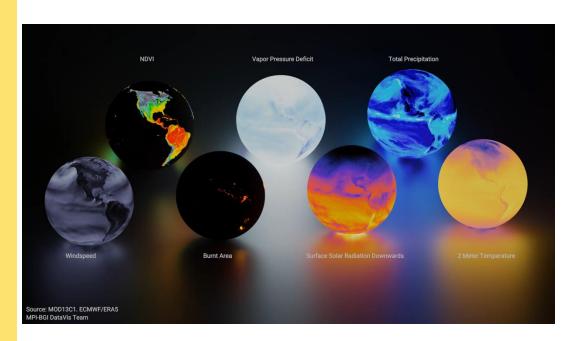
Kim et al. (2020), Sci. Adv.

Yu et al. (2020), Nature coms.

Justino et al. (2022), Clim. &

Cardil et al. (2023), Nature coms.

SeasFire Cube



SeasFire Cube: A Global Dataset for Seasonal Fire Modeling in the Earth System [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7108392

Karasante et al. SeasFire cube-a multivariate dataset for global wildfire modeling. *Scientific Data* (2025)

Design choices: granularity

Resolution: 8days x 0.25° x 0.25°

Extent: Global, 2001 - 2020

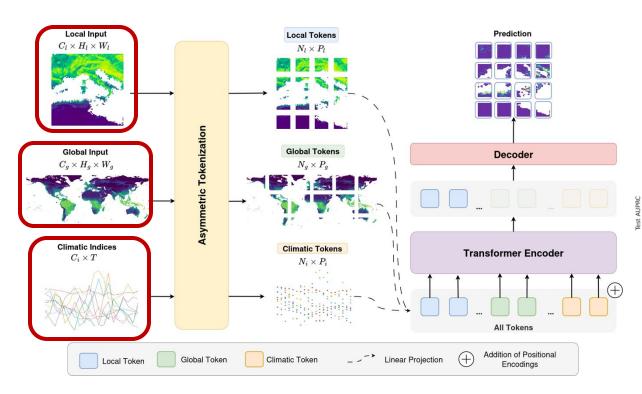
Wildfire drivers

- Satellite Observations (MODIS)
- Vegetation, Surface Temperature
- Oceanic Indices (NOAA)
- Population Density (NASA SEDAC), Land Cover (ESA CCI)

Wildfire variables

- Burned Areas (GFED, FireCCI, GWIS)
- Fire Emissions (GFAS)

Transformers: TeleViT architecture



TeleViT: Teleconnection-driven Transformers Improve Subseasonal to Seasonal Wildfire Forecasting

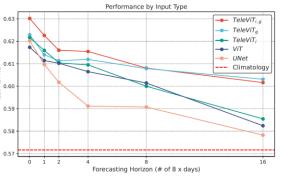
loannis Prapas (1, 3), Nikolaos-loannis Bountos (1, 2), Spyros Kondylatos (1, 3), Dimitrios Michail (2),
Gustau Camps-Valls(3), Ioannis Papoutsis (1)
(1) Orion Lab, IAASARS, National Observatory of Athens
(2) Department of Informatics and Telematics, Harokopio University of Athens
(3) Image S. Sianel Processing Group, Universitate de Valéncia

Best Paper Award at ICCV 2023, AI+HADR workshop

Paper

O Code

X arXiv



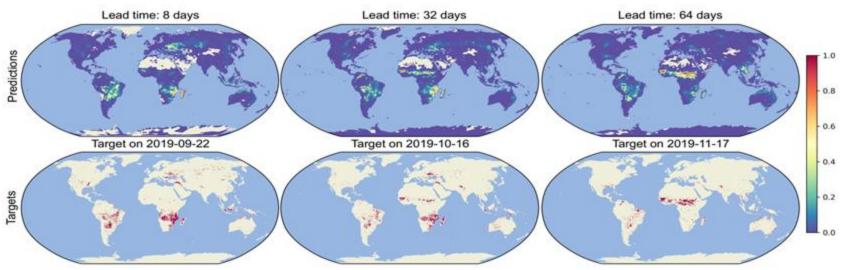
How robust are the predictions?

TeleViT: Teleconnection-driven Transformers Improve Subseasonal to Seasonal Wildfire Forecasting

Ioannis Prapas (1, 3), Nikolaos-Ioannis Bountos (1, 2), Spyros Kondylatos (1, 3), Dimitrios Michail (2),
Gustau Camps-Valls(3), Ioannis Papoutisi (1)

(1) Orion Lab, IAASARS, National Observatory of Athens
(2) Department of Informatics and Telematics, Harokopio University of Athens
(3) Image 6, Signal Processing Group, Universitat de Valência

Best Paper Award at ICCV 2023, Al+HADR workshop



How robust are the predictions?

GFED Region	Fraction of	Horizon							
GTED Region	burned areas	1	2	4	8	16	24		
Boreal North America (BONA)	0.924%	0.04	0.03	0.03	0.03	0.02	0.02		
Temperate North America (TENA)	1.986%	0.26	0.27	0.26	0.26	0.25	0.26		
Central America (CEAM)	2.137%	0.55	0.54	0.53	0.53	0.55	0.55		
Northern Hemisphere South America (NHSA)	2.673%	0.67	0.65	0.64	0.63	0.61	0.61		
Southern Hemisphere South America (SHSA)	15.619%	0.44	0.43	0.43	0.42	0.41	0.41		
Europe (EURO)	0.857%	0.20	0.20	0.19	0.18	0.17	0.19		
Middle East (MIDE)	1.029%	0.29	0.30	0.29	0.30	0.29	0.26		
Northern Hemisphere Africa (NHAF)	20.749%	0.74	0.73	0.72	0.71	0.71	0.72		
Southern Hemisphere Africa (SHAF)	29.988%	0.85	0.84	0.84	0.83	0.83	0.84		
Boreal Asia (BOAS)	4.072%	0.14	0.13	0.13	0.13	0.13	0.14		
Central Asia (CEAS)	8.264%	0.27	0.26	0.27	0.26	0.25	0.24		
Southeast Asia (SEAS)	5.764%	0.64	0.63	0.62	0.61	0.60	0.61		
Equatorial Asia (EQAS)	1.089%	0.49	0.50	0.48	0.44	0.40	0.40		
Australia and New Zealand (AUST)	4.849%	0.31	0.31	0.30	0.30	0.29	0.32		

Class imbalance

A blessing and a curse - Class imbalance in natural hazards

AI4Extremes

- Natural hazards are by definition extreme events → Rare
- Difficult to acquire a dedicated dataset for each problem
 - Depending on the problem formulation, the spatial coverage and the used sensors, different annotations may be required
 - Annotations require expert knowledge
- Spatiotemporal generalization becomes way harder with limited data
 - E.g. It is extremely difficult to predict burned areas in Africa, when using data solely from the Mediterranean for training

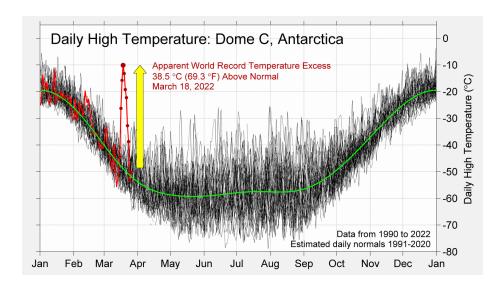


Image source: Dr. Robert Rohde

AI4EO challenges for disaster management

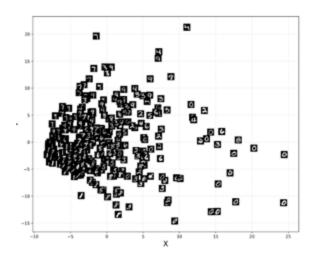
- Big data
- [≠] Labeling (imbalance + noisy labels)
- Generalization
- Uncertainty in forecasting
- Stochastic nature, complex, non-linear

Large unlabeled datasets

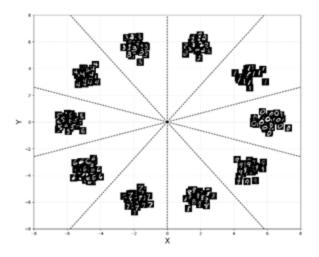
Self-supervised pre-training

Representation learning

- Deep learning success depends on learning meaningful, information-rich representations by training on large datasets
- [≠] Images are complex high-dimensional arrays → What is a good representation?



(a) 2d projection of MNIST using PCA



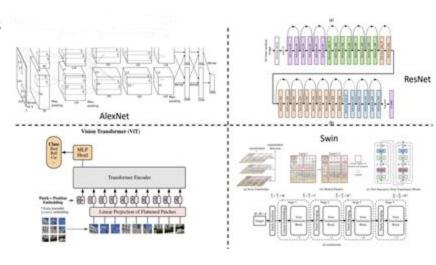
(b) Ideal 2d representation space

Supervised learning

Mapping an image to a discrete label which is associated to a visual concept

- Early/powerful foundation models when trained on large datasets
- Standard way to develop model backbones

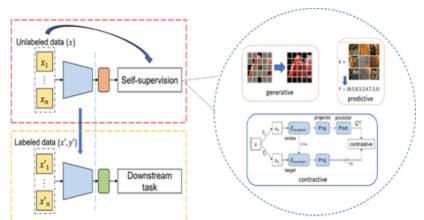
- Annotation is expensive and limited!
 - Especially in EO where expert eyes or field measurements might be needed



Gan, Zhe, et al. "Recent advances in vision foundation models" *CVPR* 2023 tutorial.

SSL in the natural image domain

- [♯]Solving a meaningful pretext task
 - e.g. Rotation prediction and Jigsaw puzzles
- [™] Instance discrimination
 - Contrastive learning e.g., SimCLR, MoCo, etc.
- Information restoration
 - e.g. Colorization, Masked Autoencoders, etc.
- [∰]Self-distillation methods
 - e.g. BYOL, SimSiam



Wang, Yi, et al. "Self-Supervised Learning in Remote Sensing: A Review." *IEEE GRSM* (2022).

Nice overview on SSL methods and tips: Balestriero et al. A cookbook of selfsupervised learning. *arXiv* (2023).

A cookbook of Self-Supervised Learning

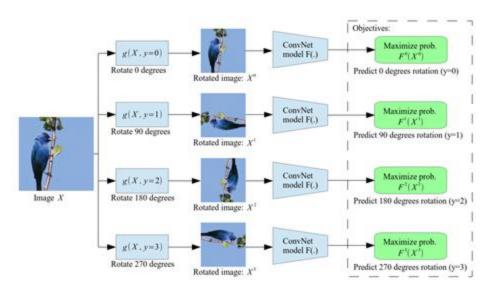
45 page Bible on SSL

A. Predictive self-supervised learning

Hand-designed pretext tasks utilizing the intrinsic characteristics of data

Solving Jigsaw puzzles [1]

Fotation prediction [2]



[1] Noroozi et al., Unsupervised learning of visual representations by solving jigsaw puzzles. European conference on computer vision (2016)

[2] Gidaris et al., Unsupervised representation learning by predicting image rotations. arXiv (2018)

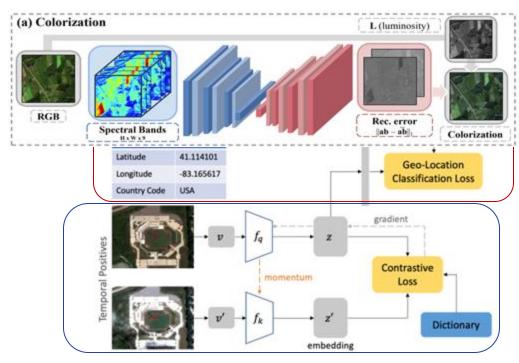
A. Predictive self-supervised learning in EO

The color out of space[1]:

- Predict RGB channels from multispectral information as a pretext task
- Downside: Learns an encoder only for MS channels, not RGB

Geography-aware SSL [2]

- Predict geolocation (grouped in K clusters) of an image
- MoCo-v2 formulation except the positive pairs come from different temporal points
- Intuitively, could provide invariance in temporal-based changes



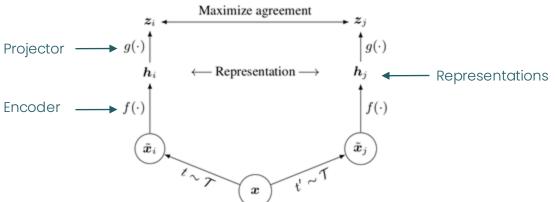
[1] Vincenzi et al., The color out of space: learning self-supervised representations for earth observation imagery. ICPR IEEE (2021)

[2] Ayush et al., Geography-aware self-supervised learning. ICCV (2021)

B. Contrastive self-supervised learning

Joint-embedding architectures with instance discrimination

☐ SimCLR [1]



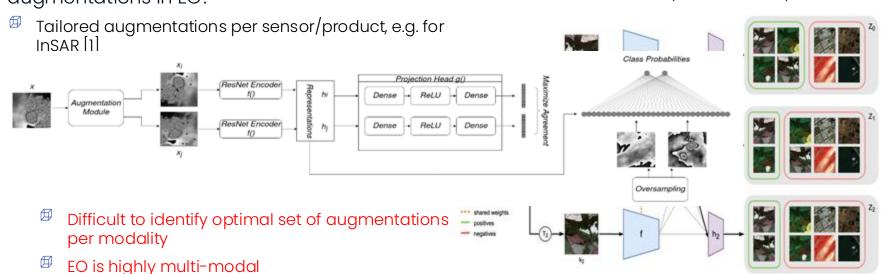
[1] Chen et al., A simple framework for contrastive learning of visual representations. ICML (2020)

- Heavy dependance on augmentation set
- Heuristics from natural images don't fit to other domains
- Megative samples are crucial to learning good representations
- Requires large batch sizes → More negative samples

B. Contrastive self-supervised learning in EO

What makes for good views / data augmentations in EO?

Three representation spaces

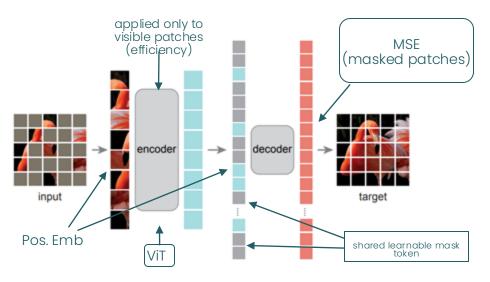


[1] Bountos, et al. Self-supervised contrastive learning for volcanic unrest detection. IEEE Geoscience and Remote Sensing Letters (2021)

[2] Manas, et al. Seasonal contrast: Unsupervised pre-training from uncurated remote sensing data. ICCV (2021)

C. Generative self-supervised learning

Masked Autoencoders [1] → Information restoration pretext task



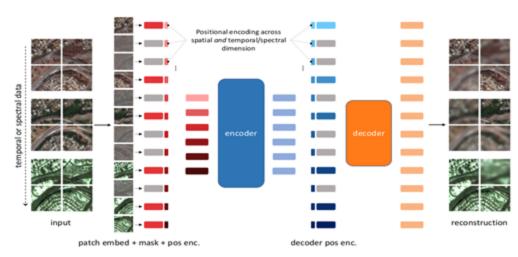
- Efficient
- Generic pretext task, applicable to any domain → highly popular in EO
- Does not rely on hand crafted augmentations → important to EO
- Good as initialization
- Representations are not highly discriminative[1][2]] → Linear probing is ineffective

- [1] He et al., Masked autoencoders are scalable vision learners. CVPR (2022)
- [2] Przewięźlikowski et al., Beyond [cls]: Exploring the true potential of Masked Image Modeling representations. arXiv (2024)

C. Generative self-supervised learning for EO

SatMAE - Masked Autoencoder for multi-spectral temporal data [1]

- Garefully exploits the unique information from the temporal and spectral dimensions of RS data
- Patches can be generated in both temporal and spectral dimensions
- Temporal or spectral group encoding



[1] Cong et al., Satmae: Pre-training transformers for temporal and multi-spectral satellite imagery. Advances in NeurIPS (2022)

Overall guidelines

- Unless one has massive compute resources, MoCo-v2 is a good way to compensate for smaller batch sizes in contrastive learning
- Data augmentations should be carefully selected taking in mind the problem at hand
 - Considering temporal based augmentation is a convenient idea in Remote Sensing (free, naturally occurring data augmentations)
- MAE is a good way to avoid choosing an augmentation set
 - An ablation on the masking-ratio however, is necessary depending on the data source and the expected downstream tasks
- In real life scenarios we are not restricted to linear evaluation
 - Fine-tuning more layers may provide significant improvements

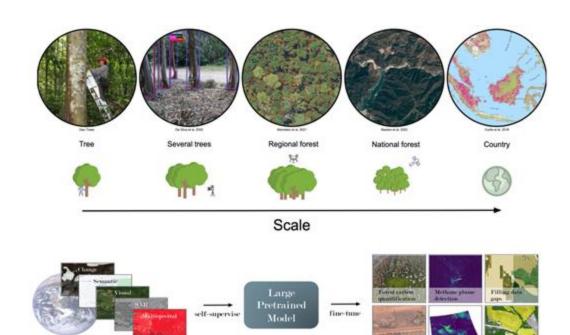
Foundation Models in EO

Sensor-agnostic FMs for EO

Earth Observation data vary in terms of:

- Scales of objects [1]
- Sensor
- [∰] GSD
 - From <1cm per pixel to >1km per pixel
- Environmental conditions

Vision: Can we create a generalist EO Foundation Model [2]?



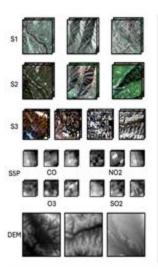
- [1] Ouaknine et al., OpenForest: a data catalog for machine learning in forest monitoring. Environmental Data Science (2025)
- [2] Lacoste et al., Geo-bench: Toward foundation models for earth monitoring. Advances in NeurIPS (2023):

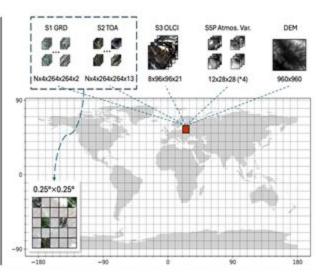
EO pretraining datasets

Datasets getting bigger and bigger, when will it stop?

Dataset	Modality	Resolution	# Time stamps	# patches	# pixels
fMoW [14]	RGB, MS	0.3-10 m	3	2M	50B
SEN12MS [53]	SAR, MS	10 m	1	540K	35B
SeCo [42]	MS	10 m	5	1M	70B
SSL4EO-S12 [62]	SAR, MS	10 m	4	3M	140B
SSL4EO-L [54]	MS	30 m	4	5M	348B
SatlasPretrain [6]	SAR, MS, RGB	0.5-10 m	~10	>10M	17T
MMEarth [45]	SAR, MS, height, landcover, etc.	10-15 m	1	6M	120B
SpectralEarth [12]	HS	30 m	1-23	540K	10B
Major TOM [23]	SAR, MS	10 m	1	8M	6.8T
Copernicus-Pretrain	SAR, MS, S3, DEM, S5P	10 m-1 km	1-12	19M	920B

Wang et al., Towards a unified Copernicus foundation model for earth vision, ICCV (2025)





The evolution tree for EO foundation models

Model	Arch.	Pretrained EO Data	Learning Strategy	Params (M)	Year
CROMA	ViT	SSL4EO-S12 [25]	Contrastive	396.13	2023
DOFA	ViT	DOFA [21]	MIM	178.20	2024
GFM-Swin	Swin-T	GeoPile [22]	MIM	128.36	2023
Prithvi	ViT	Prithvi-HLS [23]	MIM	153.28	2023
RemoteClip	ViT	SEG-4, DET-10, RET-3 [19]	Contrastive	154.34	2024
SatlasNet	Swin-T	SatlasPretrain [26]	Supervised	128.57	2023
ScaleMAE	ViT	FMoW-RGB [48]	MIM	396.21	2023
SpectralGPT	ViT	fMoW-S2 [48], BigEarthNet [49]	MIM	614.75	2024
SSL4EO-S12	ViT	SSL4EO-S12 [25]	MIM	61.99	2022
SoftCon	ViT	SSL4EO-S12 [25]	Contrastive	242.19	2024

Wang et al., Towards a unified Copernicus foundation model for earth vision, *ICCV* (2025)

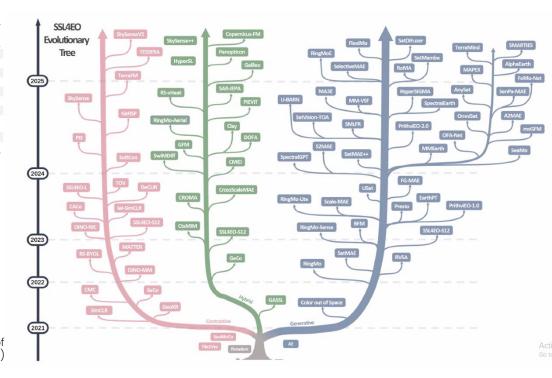


Image © Yi Wang. PhD Defense, Technical University of Munich (2025)

Requirements & evaluation of sensoragnostic FMs Thust al. On the Foundations

Zhu et al., On the Foundations of Earth and Climate Foundation Models. arXiv (2024) # Tasks
RGB
Multispectral
Hyperspectral
SAR
Time Series
Classification
Regression
Segmentation
Object Det.
Change Det.

Resolution

To be effective, EO foundation models must:

- Generalize across diversity
 - Multi-sensor & multi-modality
 - Global, multi-scale, multi-temporal
- Be robust to **real-world** challenges
 - Resist spatio-temporal shifts
 - Handle data scarcity (limited coverage, costly labels, rare events)
- Produce quality representations
 - Meaningful per modality
 - Gapture cross-modal interactions
- Be broadly applicable
 - Flexible across tasks (classification, segmentation, detection, change, instance)
 - Benchmarked on diverse, harmonized EO datasets

_	1	-		_	U 1	Ε,	_		U)	_	_	_	
SustainBench 109						✓						0.6 m-30 m	
GEO-Bench 110	12	✓	✓	✓	✓	X	•	X	~	X	×	$0.1 \mathrm{m}{-}15 \mathrm{m}$	2001 - 2021
FoMo-Bench 111												0.01 m– $60 m$	
MDAS 112	3	✓	•	✓	✓	X	X	X	•	X	×	$0.3 \mathrm{m}{-}30 \mathrm{m}$	2018
PhilEO Bench 113	3	×	•	X	X	X	×	•	•	X	×	10 m	unknown
SkySense ⁴⁸	17	~	•	X	•	•	•	X	•	✓	•	$0.05 \text{ m}{-}30 \text{ m}$	2002-2019
Prithvi 114	4	X	•	X	•	•	X	X	~	X	X	30 m	2017 - 2022
PANGAEA 115	11	'	'	X	~	'	×	'	'	X	•	$0.8\mathrm{m}{-}30\mathrm{m}$	2015-2022

(a) Benchmarks for EO FMs.

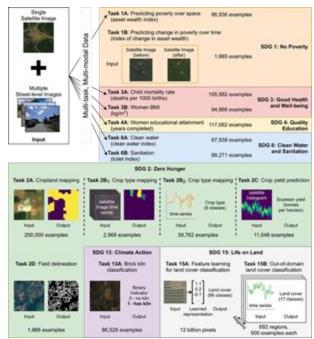
Name	Nowcasting	Medium-Range	S2S Forecasting	Climate Projection	Extreme Events	Downscaling	Resolution (Lat)	Resolution (Lon)	Resolution (Time)	Timespan
ERA5 ^{† 29}	1	1	1	1	X	X	0.25°	0.25°	1 h	1959-2024
WeatherBench 116	X	~	X	X	X	X	5.63°	5.63°	$6 \mathrm{h}$	1979-2018
Weather Bench 2^{117}	X	~	X	X	X	X	1.5°	1.5°	$6\mathrm{h}$	1979-2023
ExtremeWeather 118							0.23°			1979-2005
ClimateLearn 119								5.63°		1979-2018
CMIP6 [†] 33								2.5°		1850-2100
ClimateBench 120	X	X	X	•	X	X	1.89°	2.5°	1 yr	1850-2100
MRMS ^{† 121}	<u> </u>	<u> </u>	<u> </u>	X	×	•	0.01°	0.01°	$2 \min$	2014 - 2024

[†]Raw dataset without associated evaluation protocol.

⁽b) Benchmarks for weather and climate FMs.

Evaluation of sensor-agnostic FMs

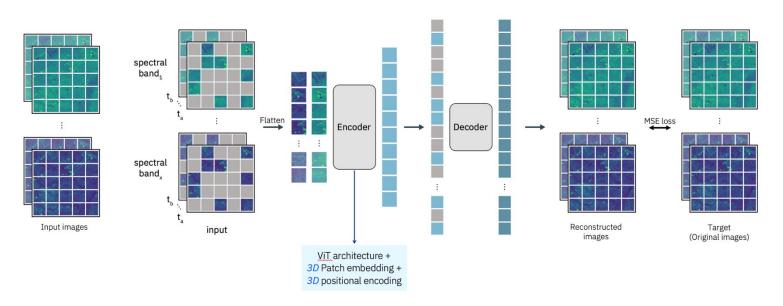
- [≠] Sustain-Bench [1]
 - 15 tasks oriented towards 7 SDGs
 - Multimodal
 - Global spatial coverage



[1] Yeh et al., Sustainbench: Benchmarks for monitoring the sustainable development goals with machine learning. arXiv (2021).

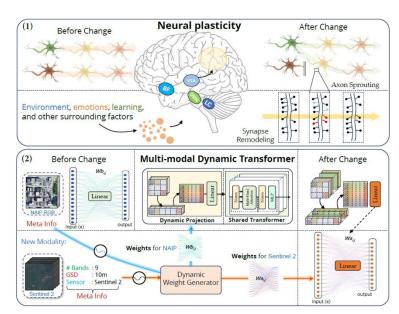
Unimodal FM - Prithvi 1.0

Based on the Harmonized Landsat-Sentinel (HLS) imagery

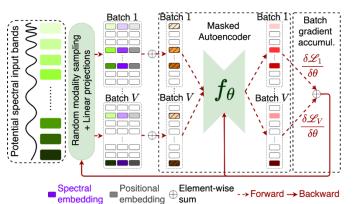


Jakubik et al., Foundation models for generalist geospatial artificial intelligence. arXiv (2023)

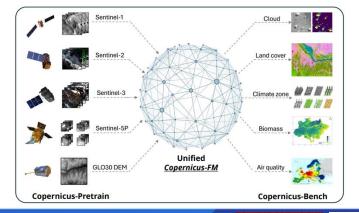
Challenges - multimodal



Xiong et al., Neural Plasticity-Inspired Multimodal Foundation Model for Earth Observation. arXiv (2024)

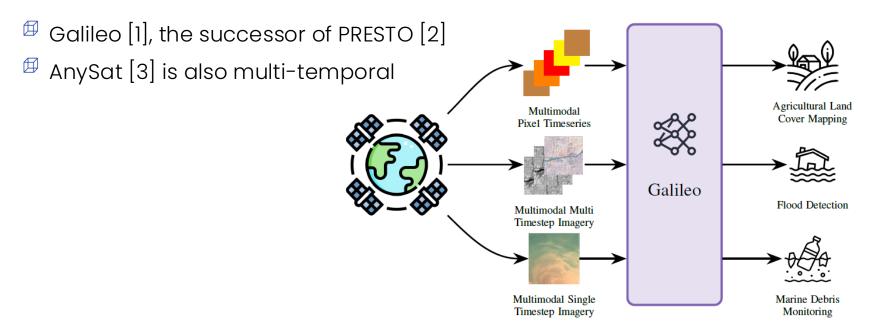


Bountos et al., FoMo: Multi-Modal, Multi-Scale and Multi-Task Remote Sensing Foundation Models for Forest Monitoring. AAAI (2025)



Yi et al., Towards a Unified Copernicus Foundation Model for Earth Vision. ICCV 2025

Challenges – temporal dimension



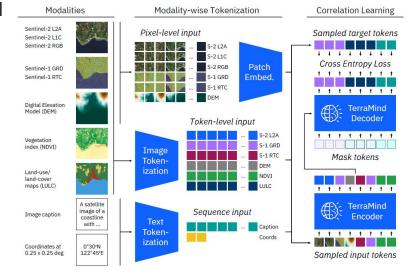
^[1] Tseng et al., Galileo: Learning Global & Local Features of Many Remote Sensing Modalities. arXiv (2025)

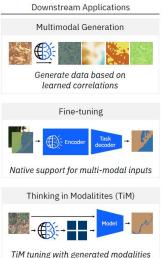
[2] Tseng et al., Lightweight, pre-trained transformers for remote sensing timeseries. arXiv (2023)

^[3] Astruc et al., AnySat: One Earth Observation Model for Many Resolutions, Scales, and Modalities. CVPR (2025)

Challenges - scale

TerraMind is the first "any-to-any" generative, multimodal foundation model for EO, pre-trained on a massive dataset comprising 1 trillion tokens derived from 9 million spatio-temporal samples across nine geospatial modalities, including optical, radar, DEM, NDVI, land-use maps, coordinates, and captions

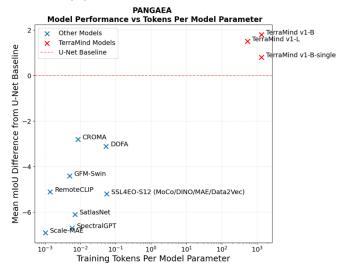


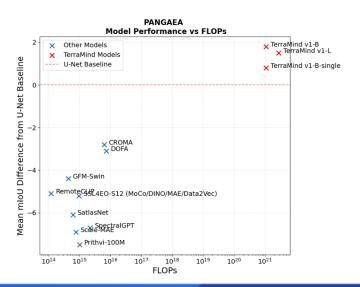


Jakubik et al., TerraMind: Large-Scale Generative Multimodality for Earth Observation. arXiv (2025)

Geospatial Foundational Disappointments

- # https://christopherren.substack.com/p/geospatial-foundational-disappointments
- After 10²¹ FLOPs and 500 B patches, IBM's TerraMind beats a supervised U-Net by just +2 mIoU on PANGAEA; losing on 5/9 tasks, most other GFMs do worse
- Current pre-training objectives are unlikely to scale further with compute and data
- [©] "I am disappointed."





Limitations

- There are many shortcuts to achieve high performance in a dataset but:
 - Can we assess how well a model encodes intra- and **inter-modality** properties and relationships?
- Pre-training is not harmonized:
 - Difficult to identify the source of performance improvements: Is it the pretraining dataset/setup or the methodology?
- Do we really need all these data? → Inherent redundancy in EO data
- Do we really need such big models?
- Fine-tuning the whole model defeats the purpose of a FM
- EO FMs do not (yet) outperform supervised models
- EO data are inherently multi-temporal.
 - Most approaches do not explicitly model this temporal nature and focus on single-image pretraining pipelines

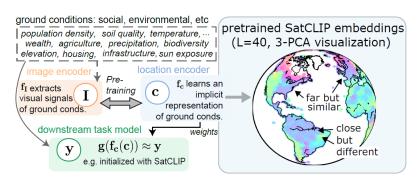
A methodological evaluation of the extracted representations is currently missing

Mechanistic interpretability at scale → understand the

understanding the domain better

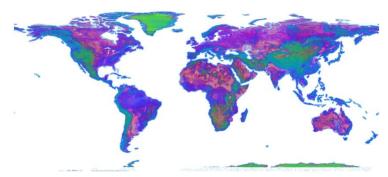
Several unresolved challenges ahead!

Outlook: global embeddings

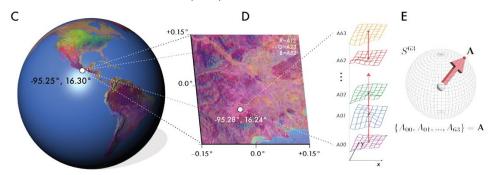


Klemmer et al. Satclip: Global, general-purpose location embeddings with satellite imagery. AAAI (2025)

"New AI model integrates petabytes of Earth observation data to generate a unified data representation that revolutionizes global mapping and monitoring"



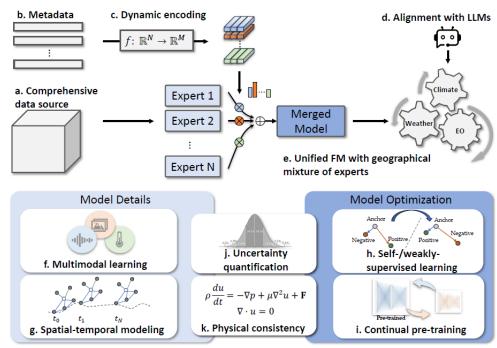
Wang et al., Towards a unified Copernicus foundation model for earth vision. *ICCV* (2025)



Brown et al., AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data. arXiv (2025)

The way forward for Earth and climate FM

- Diverse Data: Satellite, reanalysis, simulations globally and cross-modality balanced
- Metadata: Standardized for time, location, modality; enables embeddings
- Dynamic Encoding: Adapts to missing/mixed modalities using conditional computation
- ELLM Alignment: Connects EO/climate models with language for reasoning & interaction.
- Geo-MoE: Geographical mixture of expert models for scalable specialization
- Multimodal Learning: Joint & modality-specific representations
- Spatio-Temporal Modeling: Scales-aware attention across time & space
- Self-/Weak Supervision: Scalable training via contrastive/predictive methods
- Continual Learning: Avoids forgetting; adapts to new data
- Uncertainty: Quantile regression, ensembles, sparse GPs
- Physics-Aware: Respects physical laws via embedded constraints



Zhu et al., On the Foundations of Earth and Climate Foundation Models. arXiv (2024)

Uncertainty

Probabilistic ML in Natural Hazards

Uncertainty (philosophically)

Hüllermeier et al. "Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods." Machine Learning 110, no. 3 (March 2021): 457–506. https://doi.org/10.1007/s10994-021-05946-3.

Gawlikowski et al. "A Survey of Uncertainty in Deep Neural Networks." ArXiv:2107.03342 [Cs, Stat], July 7, 2021. http://arxiv.org/abs/2107.03342.

- Aleatoric (data) notion of randomness
- **Epistemic** (model) lack of knowledge

Epistemic uncertainty can be reduced with more data

Aleatoric uncertainty depends on the data generation process and cannot be reduced

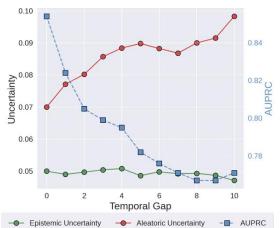
Figure 3: Illustration of the Epistemic and Aleatoric uncertainty.

Tuna et al. "Exploiting Epistemic Uncertainty of the Deep Learning Models to Generate Adversarial Samples." arXiv, February 13, 2021. https://doi.org/10.48550/arXiv.2102.04150.

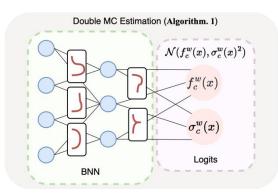
^{*} alea: latin word, game of dice (random) episteme: greek word, meaning knowledge

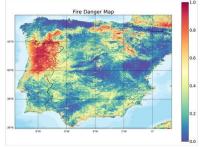
An example

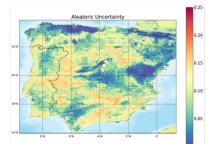
- Mesogeos dataset [1]
- Uncertainty-aware deep learning for wildfire danger forecasting [2]
- Capture epistemic uncertainty using Bayesian NNs
- Capture aleatoric uncertainty by accounting for the heteroscedastic label noise [3]

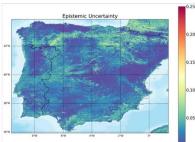


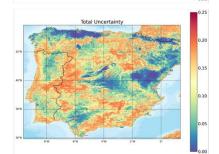
- [1] Kondylatos et al., Mesogeos: A multi-purpose dataset for data-driven wildfire modeling in the mediterranean. NeurIPS (2023)
- [2] Kondylatos et al., Uncertainty-aware deep learning for wildfire danger forecasting, arXiv (2025)
- [3] Collier et al., A simple probabilistic method for deep classification under input-dependent label noise. arXiv (2020)



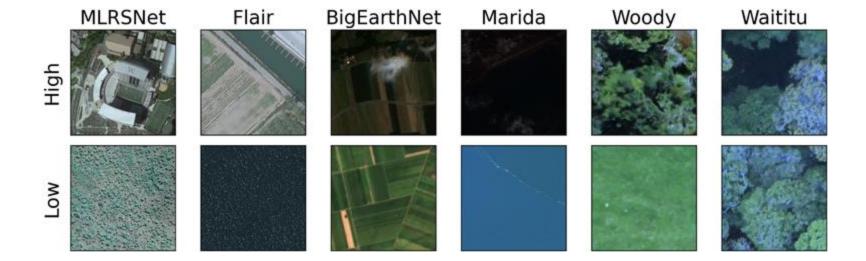








Zero-shot uncertainty estimation



Foundation models for Earth Observation

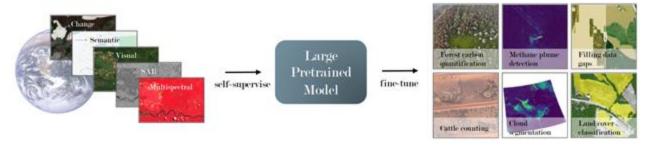


Image taken from [1].

Lacoste et al., Geo-bench: Toward foundation models for earth monitoring. Advances in NeurIPS (2023)

Generalizable uncertainty estimations

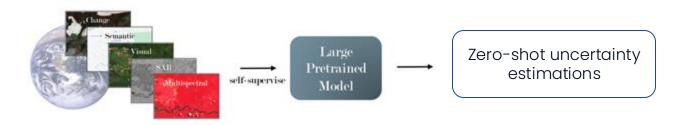
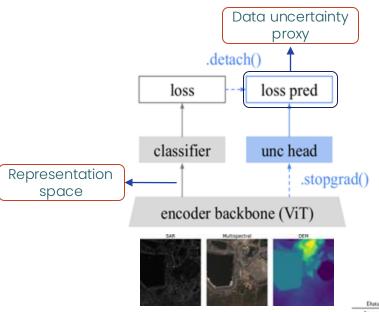


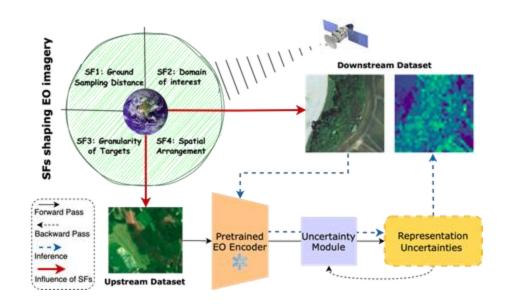
Image adapted from [1].

[1] Lacoste et al., Geo-bench: Toward foundation models for earth monitoring. Advances in NeurIPS (2023)

Pretrained representation uncertainties

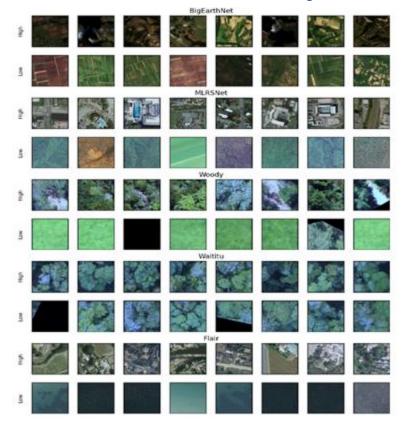


Kirchhof et al., Pretrained visual uncertainties. arXiv (2024)



Dutaset	Input Modality	Sensor	ML Setup	#Classes	EO task	Spatial Res.	Pretraining	Inference	Image Size	Coverage
Imagenet	RGB	Optical	Classification	21,841	Optical Images		~	×	224×224	
BigEarthNet	MS/SAR	S1, S2	Multi-label classification	19	LULC classification	10m	~	~	120×120	Europe
BigEarthNet-5	MS/SAR	S1, S2	Multi-label classification	5	LULC classification	10m	~	×	120×120	Europe
MLRSNet	RGB	Multi-sensor	Multi-label classification	60	Semantic Scene Understanding	≈10 - 0.1m	×	~	256×256	Global
Woody	RGB	Aerial	Image Segmentation	- 4	Tree-species detection	50cm	×	~	224×224	Chile
Waititu	RGB	Aerial	Image Segmentation	3	Invasion tree-species detection	50cm	×	~	224×224	New Zealand
Flair	RGB/NIR/DEM	Aerial	Image Segmentation	19	LULC classification	20cm	~	~	512×512	France
Marida	MS	82	Image Segmentation	12	Marine Debris Detection	10m	×	~	224×224	Global

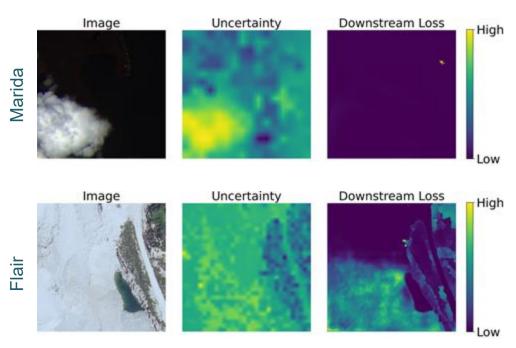
Zero shot uncertainty estimation



Can we go beyond sample-based uncertainty estimations?

Kondylatos S., Bountos N.I. et al., On the Generalization of Representation Uncertainty in Earth Observation. ICCV (2025)

- Each ViT patch can be considered as an EO image
- Estimating uncertainties for each patch results in localized uncertainty estimation



Flair and Marida uncertainties estimated from BigEarthNet pretrained ViT-Large vis-a-vis downstream pixel loss.

More about us...

- https://orion-ai-lab.github.io/
- https://github.com/orion-ai-lab
- Spring School: Al for Modeling and Understanding Climate Extremes
- ThiningEarth

Thank you for your attention

Ioannis Papoutsis

ipapoutsis@mail.ntua.gr

