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Outline

Motivation: Planets surfaces

Problems: Gaps and bias in real data, finished model training on real data

Solution: Synthetic data?

Conclusion: Data is currency in machine learning -> Data 
Quality assessment important

Rover landing and navigation
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Feature extraction

• Inceptionv3 (ImageNet: 1.2 M images 1000 
classes) • CLIP (400 M images text pairs, 

supervised)
• DINOv2 (142 M images text pairs, 

self-supervised, Earth satellite 
Images)



Structure

1. Distribution based metrics

2. Pairwise image similarity 
metrics

3. Visualization techniques and 
qualitative feature space analysis



Pairwise image similarity 
metrics

Evaluation metrics

• PSNR (pixel-based)
• MS-SSIM (pixel-based)
• LPIPS
• DREAM-SIM

• ISC
• FID
• KID(poly), KID(rbf)
• CMMD
• Precision and Recall
• PPL

Distribution based metrics



Stylegan2-ada-pytorch
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DreamSIM:

𝐷𝑟𝑒𝑎𝑚𝑆𝑖𝑚 𝑥, 𝑦 =෍

𝑙𝜖𝐿

𝑤𝑙 ∙ 𝑠𝑖𝑚(𝜃𝑙 𝑥 , 𝜃𝑙 𝑦 )

• 𝐿 is set of network layers used
• 𝑤𝑙  are learned weights for each layer 𝑙
• 𝑠𝑖𝑚 ∙,∙ is a similarity function (cosine-similarity, 

L2)
• 𝜃𝑙 𝑥 denotes feature representation of image 𝑥

at layer 𝑙

(Fu et al., 2023)



DreamSIM: Random matches



Nearest 
neighbor paring 
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Nearest 
neighbor paring 
on Training 
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Entropy Bias:

𝐻 𝑝 = −෍

𝑖=1

𝑁

𝑝𝑖 × log 𝑝𝑖 Average over RBG and image pair
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Entropy Bias:

𝐻 𝑝 = −෍

𝑖=1

𝑁

𝑝𝑖 × log 𝑝𝑖 Average over RBG and image pair



Pearson Correlation between Metrics & 
Entropy



Conclusion

Fidelity and diversity images compared to benchmarks on popular 
datasets

Choice of feature extractor: CLIP << Inception < DINO  

Pixel-based metrics have entropy biases, reduces for features-based 
metrics, vanishes when human aligned.

No single reliable metric -> evaluation domain and application specific. 



Are models aligned 
with human 
perception?

Outlook and open questions

Clip’s “Bump” -> 
sensitive to color?

Image similarity 
metrics bias toward 

simple structure?

Better nearest 
neighbor matches?



Thank you for listening!
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