Vessel Trajectory Prediction Using Robust AIS Preprocessing and Dual-Self-Attention GRU

Marilena Sinni, Dimitris M. Kyriazanos

National Centre for Scientific Research "Demokritos", Institute of Informatics and Telecommunications (IIT)

Workshop on Al-driven Data Engineering and Reusability for Earth and Space Sciences (DARES'25), co-located with the 28th

European Conference on Artificial Intelligence (ECAI 2025), Bologna, Italy, October 25, 2025.

Motivation

- Precise forecasting of vessel trajectories
- Why? For safe and efficient maritime traffic management
- Difficulties
 - Maritime data suffer from inherent errors
 - o Continuous forecasting for hours if challenging

Goal & Challenges

Prediction Goal

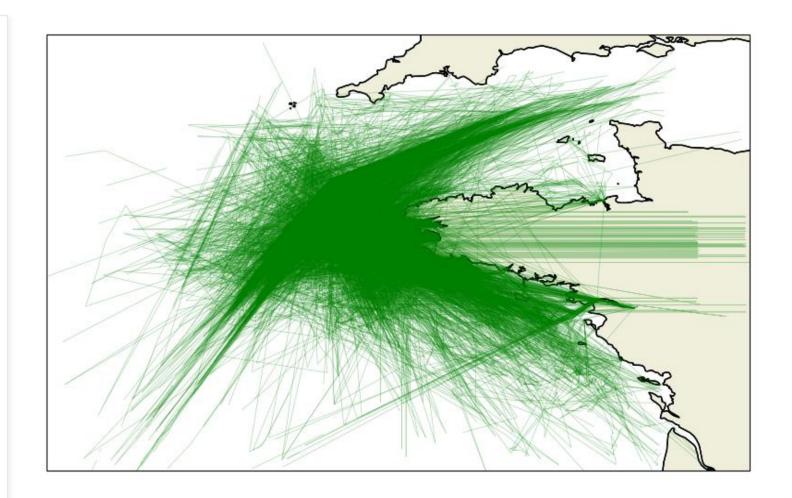
- Predict latitude & longitude, Speed over Ground (SOG) and Course over Ground (COG)
- Prediction over a multi-step time horizon spanning several hours.

Key Challenge

 Bridge the gap between complex Automatic Identification System (AIS) data preprocessing and accurate future trajectory forecasting

Raw AIS Data Inaccuracies

- Irregular sampling & gaps: messages arrive unevenly (seconds → hours).
- Noise and anomalies: includes position spikes on land, duplicated or missing reports, and physically impossible speed values.
- Heterogeneous vessel behavior: different ship types and manoeuvres.



Our Contributions

• Comprehensive AIS preprocessing pipeline ensuring noise-free, consistent trajectories that enhance prediction performance.

Our Contributions

- Comprehensive AIS preprocessing pipeline ensuring noise-free, consistent trajectories that enhance prediction performance.
- A robust sequence forecasting model, combining a single-layer GRU with a dualhead self-attention mechanism.

Our Contributions

- Comprehensive AIS preprocessing pipeline ensuring noise-free, consistent trajectories that enhance prediction performance.
- A robust sequence forecasting model, combining a single-layer GRU with a dual-head self-attention mechanism.
- Joint prediction of future vessel position, Speed Over Ground (SOG), and Course Over Ground (COG) up to 7 hours ahead, significantly outperforming LSTM and standard GRU baselines.

Methodology (1/2): Preprocessing

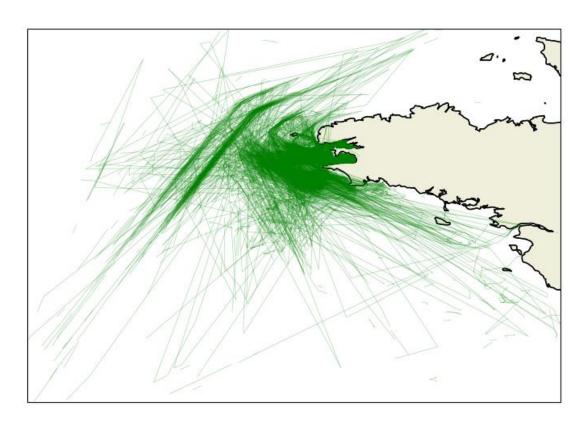
AIS data preprocessing

- Cleaning
 - o Remove implausible values
 - Deduplication
 - Remove stationary vessels
- Trajectory extraction
 - Split voyages
 - Trajectory segmentation

- SOG error correction
 - Prevent unrealistic jumps
- Position error correction
 - Smooths unrealistic displacements
- Temporal resampling to 1minute fixed interval

Raw AIS data

Preprocessed AIS data



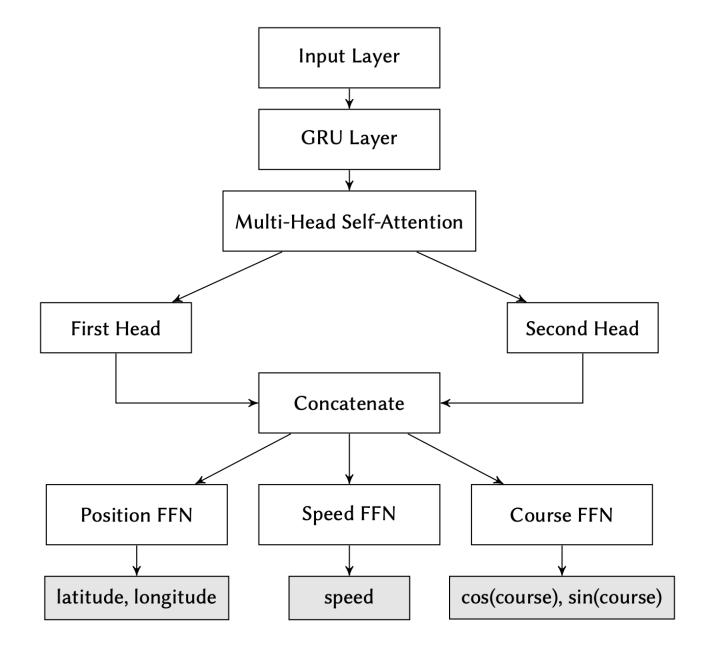
Preprocessing results

Correction Type	Points Updated	Updated (%)
Speed anomaly correction	1 106 345	13.56%
Position anomaly correction	1 620 114	19.85%

Stage	Points	Removed (%)	Vessels / Trajectories
Initial	19 035 630	_	5 055 vessels
After Deduplication	18 026 004	2.93%	5 055 vessels
After COG Filtering	18 025 812	0.00%	5 055 vessels
After SOG Filtering	9 389 527	45.37%	4982 vessels
After Ship-Type Filtering	8 617 489	4.06%	4891 vessels
Extracted Trajectories	8 159 865	5.31%	31 136 traj./ 1 681 vessels
After Stationary Removal	6 947 719	14.86%	25 710 trajectories
After 1-min Resampling	1 737 625	75.00%	25 660 traj./ 1 661 vessels

Methodology (2/2): Vessel trajectory prediction framework

Dual-Self-Attention GRU Prediction Model Architecture



Input layer:

Raw trajectory point at time *t*:

$$p_t = (x_t, y_t, v_t, \theta_t)$$

- x, y: longitude/latitude
- v: Speed Over Ground (SOG)
- θ: Course Over Ground (COG)

Handle course circularity:

$$p'_t = (x_t, y_t, v_t, \cos \psi_t, \sin \psi_t)$$

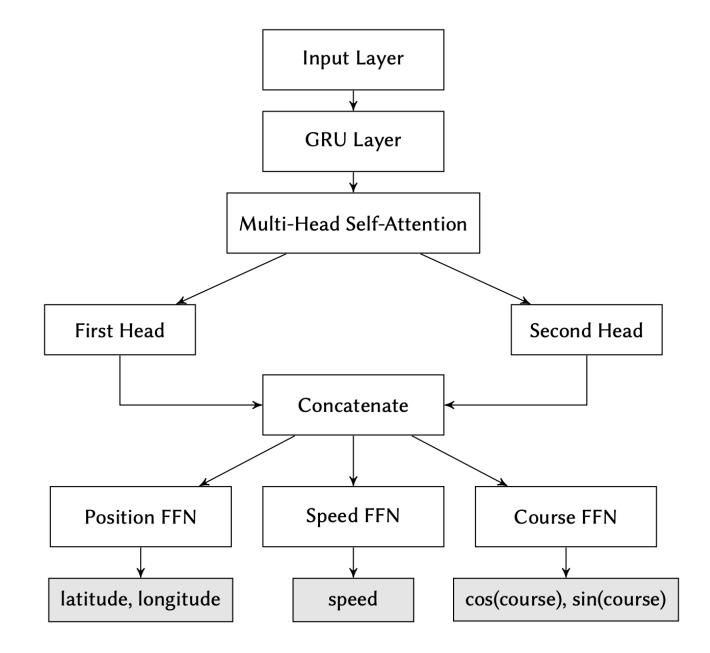
where COG is converted to radians $\psi = \frac{\pi}{180} \vartheta$ and mapped to sine-cosine components

Model input

$$Xi = {\tilde{p}_1, \tilde{p}_{i+1}, \tilde{p}_{i+2}, \tilde{p}_{i+3}, \tilde{p}_{i+4}}$$

Prediction Target

$$yi = \tilde{p}_{i+5}$$



GRU Layer:

- Hidden size = 256
- Generates full sequences of hidden states $H = \{h_1, h_2, ..., h_T\} \in \mathbb{R}^{\text{TX}256}$

Dual-head self-attention (two parallel heads):

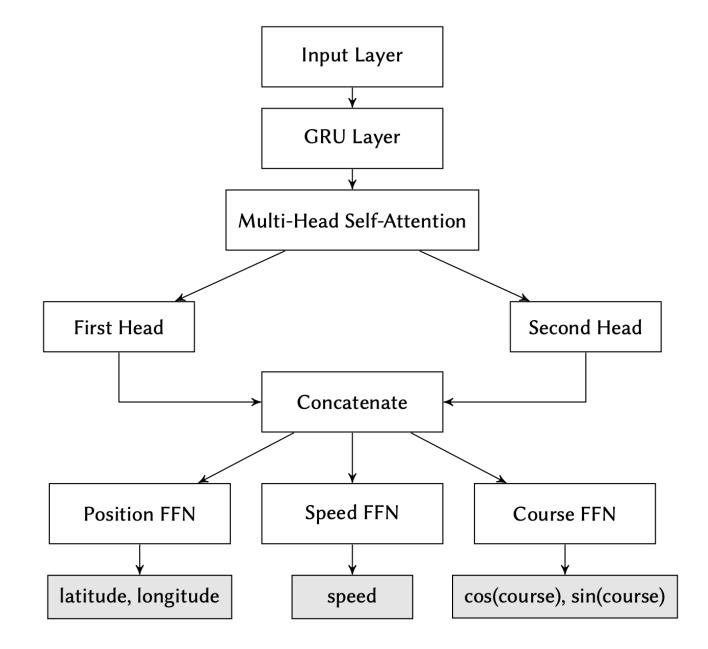
For each head $k \in \mathbb{R}^{TX256}$,

$$\text{head}^{(k)} = \text{softmax} \left(\frac{Q^{(k)} (K^{(k)})^T}{\sqrt{d_k}} \right) V^{(k)}$$

Concatenate heads and project:

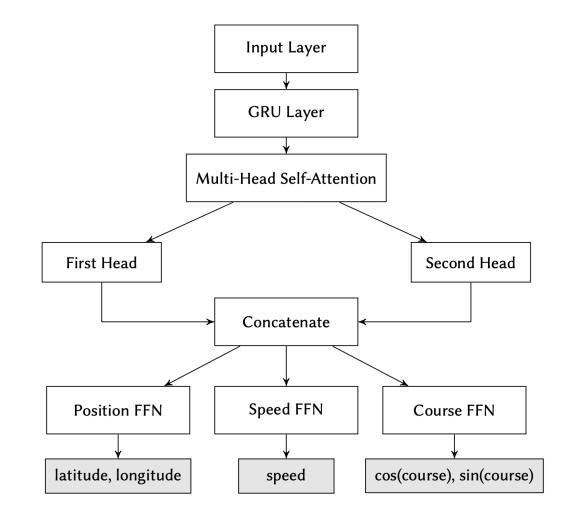
$$AttOut = [head^{(1)}; head^{(2)}]W_o + b_o$$

 $H_{out} = LayerNorm(H + AttOut)$



One MLP for each modality

- Position (latitude, longitude)
- Speed
- Course $(\cos \theta, \sin \theta)$



Loss Function:
$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \left[(x_i - \widehat{x_i})^2 + (y_i - \widehat{y_i})^2 + (v_i - \widehat{v_i})^2 + \left(1 - \left(\cos \theta_i \cos \widetilde{\theta}_i + \sin \theta_i \cdot \sin \widetilde{\theta}_i \right) \right) \right]$$

Experimental results

Model performance comparison

Model	Total Loss	Median Error (m)	Avg Error (m)	Max Error (m)
LSTM	0.0158	98.5	154.0	7341.6
GRU	0.0157	86.3	131.8	8796.3
GRU+Single-head Attention Layer	0.0157	63.1	97.4	7198.9
GRU+Dual-head Attention Layer	0.0156	58.5	90.4	6327.0

Cargo vessel trajectory prediction

- 49 points

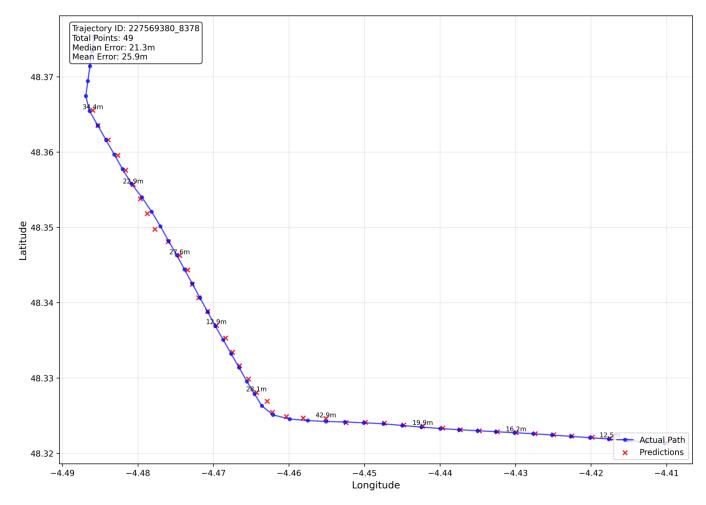


Figure 1a: latitude and longitude prediction

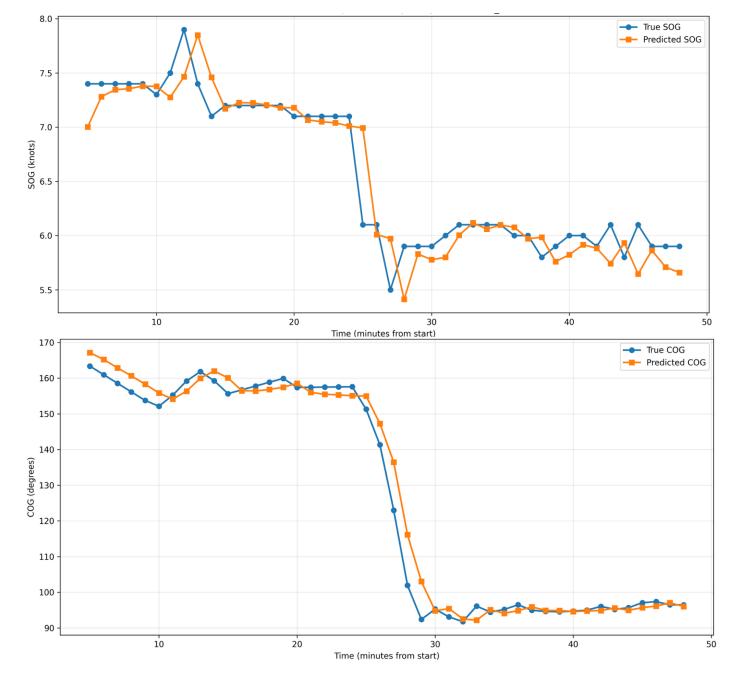


Figure 1.b: SOG prediction

Figure 1.c: COG prediction

Tug vessel trajectory prediction

- 208 points

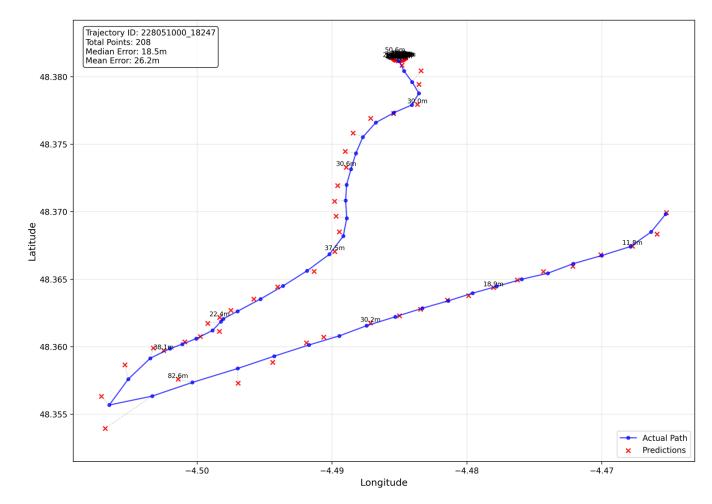


Figure 2a: latitude and longitude prediction

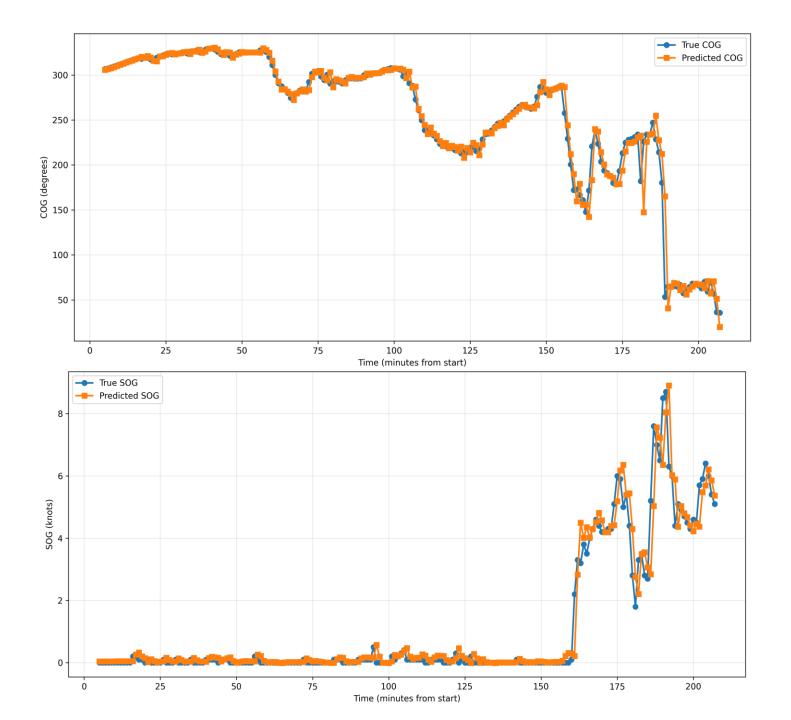


Figure 2.b: SOG prediction

Figure 2.c: COG prediction

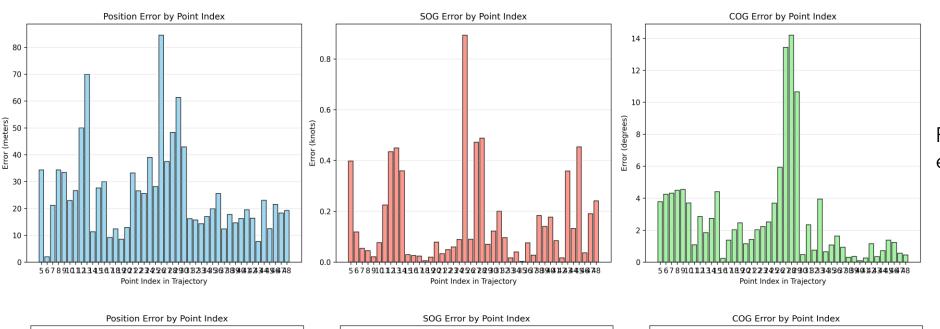


Figure 2.a: Tug vessel error distribution

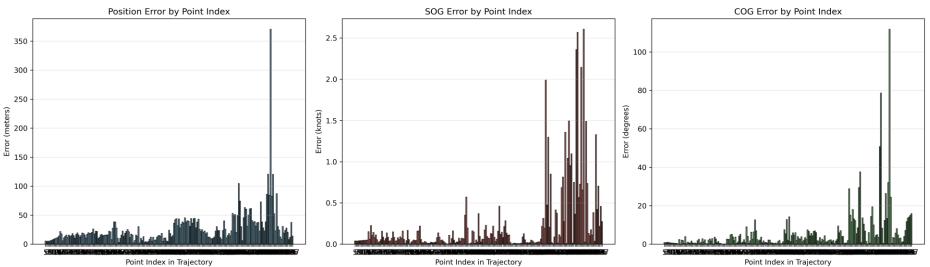


Figure 2.b: Cargo vessel error distribution

Conclusions

- **Proposed preprocessing pipeline** effectively cleans and structures AIS trajectories, making them suitable for prediction and other downstream tasks.
- **Self-attention** dynamically re-weights past time steps, capturing long-range dependencies and abrupt maneuvers that recurrent layers may miss.
- **GRU** + dual-head self-attention architecture accurately forecasts future vessel positions, speeds, and courses for prediction horizons of up to 7 hours.
- **Dual-head attention** outperforms single-head and standard RNN/GRU baselines, demonstrating clear performance gains from learning complementary temporal contexts.

Limitations & future work

- The heterogeneity of our dataset enables better generalization across various dataset types need to be validated.
- Benchmark our model's strong performance against additional state-ofthe-art methods, such as transformers and bidirectional RNNs.
- Evaluate the preprocessed dataset on anomaly detection tasks.

Thank you!

Questions?