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» Accurate weather prediction on Mars
is imperative for the safety of future
human explorers

« Conventional physics-based numerical
weather prediction face challenges
due to sparse observational data and
intricacies of the martian atmosphere

* We propose to use Machine Learning
(ML) to forecast martian weather using
the OpenMARS reanalysis dataset
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Research questions
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« Can an ML model provide a rapid forecast of the expected local
weather on a par with complex physics-based numerical weather
prediction models?

« Can an ML model predict an impending global dust storm?

* Do some particular ML models outperform others at the above
tasks?
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What is OpenMARS?
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4
T ;E ¢ Open access to Mars Assimilated Remote
global Soundings (OpenMARS) dataset.
/ reanalysis
dataset

Credit: ESA/ATG medialab
Credit: mars.nasa.gov/mro

« Reanalysis product combining past spacecraft
observations with a Mars Global Circulation
Model

Observations Global Circulation

Trace Gas Model
Orbiter °ce » Global 4-D surface/atmosphere reference

Mars Climate - database of surface and atmospheric properties
Sounder ' AN from July 1998 to April 2019 (equivalent to
*t around eleven Mars years).
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MY34 Solar Longitude: 186.41°

O SSSSS—S—S—S——
0.1 ppm Water vapour volume mixing ratio (mol/mol) 500 ppm

o ——
0.1 ppm Dust mass mixing ratio (kg/kg) 50 ppm
|
0.01 ppm Water ice volume mixing ratio (mol/mol) 500 ppm
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What data are we using from OpenMARS 2
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° FOCUS on predlctlon Of Variable DESCI’iptiDﬂ Unit
e surface pressure Tsurf Surface temperature Kelvin
f t " Psurf Surface pressure Pascals
surtace temperature Cloud Water ice optical depth at infrared wavelength No unit
* near-surface zonal wind speed Vapour Water vapour column kg/m?
. u_wind Near-surface (~4 m) zonal wind m/s
dust column v_wind Near-surface (~4 m) meridional wind m/s
Dust Dust column optical depth at visible wavelength | No unit
Temp Atmospheric temperature at ~20 km altitude Kelvin
First few rows of the cleaned dataset
Time Tsurf Psurf | Cloud | Vapour | u_wind | v_wind | Dust | Temp
1998-07-15 21:23:39 | 264.042 | 721.113 | 0.092 0.027 -7.451 8.604 0.428 | 179.686
1998-07-15 23:26:53 | 274.736 | 705.090 | 0.145 0.026 -7.053 4,934 0.427 | 174.502
1998-07-16 01:30:07 | 265.939 | 700.691 | 0.105 0.026 -6.825 -0.063 0.427 | 173.429
1998-07-16 03:33:21 | 238.624 | 697.252 | 0.134 0.025 -5.373 -4.048 0.426 | 173.556
1998-07-16 05:36:35 | 213.634 | 717.146 | 0.139 0.026 -3.899 -3.133 0.426 | 174.789
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What coverage does OpenMARS contal

« Temporal resolution of the dataset is every two hours and in total there are
88,560 data points for each variable

« Choose one atmospheric column from the complete OpenMARS spatial grid
(5° lat-lon) corresponding to InSight landing site location for local forecasting

* The dataset covers the timespan from the start of Mars Year 24 to just after
the end of Mars Year 34, equivalently from 15% July 1998 to 23" April 2019.

 Split ratio of 70, 20 ,10 for training, validation and testing of ML models
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What ML models are we using? \ 1 o Toring

 Darts python library for training the time series forecasting ML models

 Input_chunk length = a week of Mars data Da rtS

e Output_chunk length = one day of Mars data

Best hyperparameter values

Model Hyperparameters
RNNModel n_rnn_layers=2, hidden_dim=30, batch_size=96, dropout=0.25, learning_rate=0.0005
TCNModel kernel_size=2, num_filters=6, dilation_base=2, batch_size=96, dropout=0.05, learning_rate=0.0005

Transformers | d_model=12, n_head=6, num_encoder_layers=2, num_decoder_layers=4, dim_feedforward=64,
batch_size=96, dropout=0.05, learning_rate=0.0005

NBEATS num_blocks=3, num_layers=4, layer_widths=512, batch_size=96, dropout=0.05, learning_rate=0.000953
TiDe num_encoder_layers=2, num_decoder_layers=2, decoder_output_dim=1, temporal_decoder_hidden=1,
batch_size=96, dropout=0.05, learning_rate=0.0005, hidden_size=30
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ML forecasting results

Surface Temperature / K

Surface pressure / Pa

Zonal wind / ms™!
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ML forecasting metrics

* Three different ML models
perform best for the three different
variables predicted

« Surface temperature: TCN

« Surface pressure: TIiDE
« Zonal wind: NBEATS

« Overall TCN model is perhaps the
best model at predicting across all
three variables and showed
potentially interesting results for
dust column optical depth too....
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Model Variable MAE MAPE RMSE
Tsurf 0.0247 11.07 0.0341

RNN Psurf 0.0275 6.02 0.0407
u wind 0.0646 16.67 0.0901

Tsurf 0.00602 2.54 0.0109

TCN Psurf 0.0130 2.67 0.0172
u_wind 0.0612 15.25 0.0764

Tsurf 0.0281 14.25 0.0362

Transformer Psurf 0.0279 6.01 0.0408
u_wind 0.0605 15.42 0.0861

Tsurf 0.0188 8.71 0.0258

NBEATS Psurf 0.0321 6.16 0.0404
u_wind 0.0534 13.76 0.0751

Tsurf 0.00699 2.99 0.0126

TiDE Psurf 0.0118 2.48 0.0160
u_wind 0.0665 16.14 0.0781
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1@ —— Actual —— NBEATS RNN —— TCN —— Transformer —— TIDE
MAE:  0.0426 0.0404 0.0405 0.0431 0.0481
o MAPE:  32.13 23.09 27.84 28.46 37.49
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(b)
* Not a huge amount of intrinsic variability between the
different ML model forecasts >

 TCN model shows abrupt increase just as the global dust
storm is initiating in reality (within the noise?)

7th June 2018 9th June 2018
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Why is it difficult to forecast a global dust

Dust Storm Data
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* There were only two instances of global dust storms in training dataset over the
nine Mars years included

* The three global dust storms in the entire dataset occur at different times of the
year
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 TCN and TiDE ML models most efficient in reproducing realistic
tidal structures in surface pressure

* Dust storms are difficult to predict on Mars!

* Future work:
« Testing ML models on actual data alone (e.g. InSight lander)
« Extend the training data through including more recent reanalysis data
« QOpen question: are there other known methods to tackle dust forecasting?

* Replication package and benchmarking results are publicly

accessible here: > 5 oA
https://github.com/amelBennaceur/OpenMarsML version5 A
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