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Motivation

• Global warming


• Rise of extremes (floods, flashfloods, rainstorms)


• Forecasting of local hazard/impacts 


• Enabling proactive adaptation.

Image: https://edition.cnn.com/2023/09/07/europe/greece-floods-storm-rescue-climate-intl

https://edition.cnn.com/2023/09/07/europe/greece-floods-storm-rescue-climate-intl


Can AI forecast extreme precipitation? 

• ML/DL can forecast “normal” precipitation


• Extreme precipitation events are rare and high-impact 


• which predictors are the most informative for extreme precipitation?

Problem Statement



• Foundation models for Earth Observation forecast: GraphCast, GenCast, Pangu-Weather

Leverage GNNs, diffusion models, transformers

Achieve high accuracy and speed.


• Specialized precipitation nowcasting

Example: SmaAt-UNet (lightweight attention U-Net)


• Dominant drivers

In United States for monthly extreme precipitation


Related Work



• ERA5:  Atmospheric reanalysis data for climate 

• Input: Europe region (34°–72° N, 25° W–65° E)

• Output: Greece (34°–42° N, 19°–28° E)

Data

• Binary mask of extreme

•  Threshold 0.0015 m

Total precipitation :  total amount of water accumulated over a particular time period which depends on the data extracted

https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation#ERA5:datadocumentation-Meanrates/fluxesandaccumulations


7 Predictors ( ERA5 single-level variables):


• Wind : 10 m u-wind (u10), 10 m v-wind (v10)


• Moisture: vertically integrated moisture divergence (vimd)


• Cloud coverage: total cloud cover (tcp)


• Stability measure (flag the posibility of a thunderstorm):  K-index (kx)


• Precipitation: total precipitation (tp)


Data



Methodology:



Models

Backbone:

• SmaAt-UNet (4) → compact encoder–

decoder

Spatio-temporal modeling:

• ConvLSTM bottleneck → processes two 

consecutive time-step feature maps

• Captures short-term temporal dependencies

Output layer:

• Final 1×1 convolution 

• 2D adaptive average pooling → matches the 

33 × 37 Greek grid

Loss function:

• Focal loss (6) applied to handle class 

imbalance (rare extreme events vs. many 
non-extremes)  
ℒFL (pt) = − α (1 − pt)γ log pt



Top predictors across all horizons (2, 4, 6 days):

• Total precipitation (tp) → most important split feature

• K-index (kx) → consistently second


Key insight:

• Stable importance rankings across horizons → predictors carry robust signals.

• Confirms that tp and kx dominate, with vimd still relevant.


Results: XGBoost Classifier



Performance trends

• Precision higher than recall → extremes remain hard to detect.

• All metrics degrade as forecast horizon increases (2 → 6 days).

Top predictors

• Total precipitation (tp) and K-index (kx) consistently rank among the top three.

• Wind components contribute less predictive power.

Results: Deep Learning Models

Predictor 2-days 4-days 6-days

tp 0.2027 0.1003 0.0943

kx 0.2228 0.2120 0.2120

(Values extracted from Tables 3–5) for precision



Which predictors are the most informative for extreme precipitation? 

Evaluation of seven ERA5 single-level predictors for extreme precipitation in Greece.

Consistent findings across methods:

• Deep Learning → tp, kx strongest predictors.

• XGBoost → tp, kx top-ranked, with vimd also important.

Performance decreases with longer lead times (2 → 6 days), highlighting the challenge of rare-event 
forecasting.

Focusing on interpretable and efficient predictors can improve reliability of AI-driven extreme 
precipitation forecasts.


Conclusion



Expand predictor set

• Add pressure-level variables (geopotential height, humidity, multi-level winds).

• Evaluate their added value for extreme precipitation classification.

Explore variable interactions

• Test a wider array of predictor combinations.

• Use fixed-architecture framework to identify the most informative subsets.

Benchmark against NWP models

• Compare data-driven extreme-event classifier with numerical weather prediction (NWP) outputs.

• Assess relative skill and complementarity.

Future Work



Questions 

Use the QR-code and ask your question



Thank you very much for your attention!
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Motivation

• In recent years, machine-learning (ML) and deep-learning 
(DL) approaches have exponentially improved.


• Deep learning is becoming a powerful tool in climate science, 
supporting advances for example in the identification of 
atmospheric circulation patterns, weather forecasting, and 
extreme event classification.


• In some cases achieving performance comparable to 
traditional numerical weather prediction (NWP) in skill


• However, the complexity of atmospheric processes, 
particularly those that drive rare and high-impact precipitation 
events, still creates major challenges in data driven AI 
methods.




• Extreme precipitation events are rare, high-impact, and difficult to forecast with deep 
learning and data driven methods.


• Most ML/DL studies for data driven forecasting rely on either very large sets of variables or 
a few commonly used predictors, without systematic testing.


• It remains unclear which atmospheric predictors from reanalysis data carry the strongest 
signal for extreme precipitation events in data driven AI methods.


• A systematic evaluation of predictors’ skill is needed to improve the understanding of data-
driven forecasting of extremes.

Problem Statement



Predicting precipitation has become a core task within the new generation of forecasting models, in 
some cases, as part of forecasting the state of the atmosphere and in some cases as the only target. 


Data driven weather forecast models (GraphCast (1), GenCast (2), Pangu-Weather (3))

• Leverage GNNs, diffusion models, transformers for global medium-range forecasts.

• Achieve high accuracy and speed, trained on decades of ERA5 data.


Specialized precipitation nowcasting

• Example: SmaAt-UNet (lightweight attention U-Net) (4)

• Delivers comparable skill to larger networks with fewer parameters.


Related Work



An ensemble of machine-learning methods has also been applied to identify the dominant drivers of 
extreme- events intensity and frequency on a regional scale


Feature importance studies

• Ensembles (Random Forest, XGBoost, ANN) used to find dominant drivers of extremes (e.g., 

latent heat flux, humidity, soil moisture) (5).


Related Work


